The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structu...The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.展开更多
Splicing process parameters determined by dynamic characteristic of pneumatic actuator in air splicer have a significant influence on the performance of spliced yarn. Both gas thermodynamic and pneumatic actuator dyna...Splicing process parameters determined by dynamic characteristic of pneumatic actuator in air splicer have a significant influence on the performance of spliced yarn. Both gas thermodynamic and pneumatic actuator dynamic models, which were solved by the Runge-Kutta algorithm, were established to analyze the relationship among structural parameters of a pneumatic actuator and splicing process parameters such as splicing duration and gas consumption. Additionally,a visualization test bench to observe the dynamics of the pneumatic actuator and a mass flow measurement system to track splicing duration and gas consumption were designed. Comparisons between experimental data and simulation results show that the mathematical model accurately accounts for the dynamic characteristics of the pneumatic actuator,and consequently predicts splicing process parameters, which provides a theoretical foundation for the design optimization of air splicer.展开更多
基金The project supported by the National Natural Science Foundation of China (19672070)
文摘The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.
基金National Natural Science Foundation of China(No.51275482)Zhejiang Provincial Natural Science Foundation of China(No.LZ14E050004)the 521 Talent Project of Zhejiang Sci-Tech University,China
文摘Splicing process parameters determined by dynamic characteristic of pneumatic actuator in air splicer have a significant influence on the performance of spliced yarn. Both gas thermodynamic and pneumatic actuator dynamic models, which were solved by the Runge-Kutta algorithm, were established to analyze the relationship among structural parameters of a pneumatic actuator and splicing process parameters such as splicing duration and gas consumption. Additionally,a visualization test bench to observe the dynamics of the pneumatic actuator and a mass flow measurement system to track splicing duration and gas consumption were designed. Comparisons between experimental data and simulation results show that the mathematical model accurately accounts for the dynamic characteristics of the pneumatic actuator,and consequently predicts splicing process parameters, which provides a theoretical foundation for the design optimization of air splicer.