One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH f...One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.展开更多
Local air pollution is strongly affected by synoptic weather systems,such as fronts,troughs,low-altitude vortices,or high-altitude ridges.Nevertheless,few studies have analyzed the meteorological properties of cold or...Local air pollution is strongly affected by synoptic weather systems,such as fronts,troughs,low-altitude vortices,or high-altitude ridges.Nevertheless,few studies have analyzed the meteorological properties of cold or warm air masses associated to these systems and their impact on local air quality.In this study,hourly observations of fine particulate matter(diameter of up to 2.5µm,i.e.,PM_(2.5)),wind(V),temperature(T),pressure(P),and precipitation(R),acquired in Hangzhou in 2014-2020,were analyzed.From this analysis,weather patterns were categorized into 27 types;89 and 94 cases illustrating the passage of warm and cold air masses over Hangzhou were identified,respectively;the influence of air mass temperature,wind speed,and wind direction on PM_(2.5) concentrations and local accumulation or removal was quantified.The main results are as follows.(1)Pollution events occurred more frequently for cold than for warm air masses,but average pollutant concentration was lower for cold air masses;(2)48%of the cold air mass cases corresponded to PM_(2.5) decreases and 52%to PM_(2.5) increases,with strong cold air masses(ΔT_(24h)>4°C;∣V∣_(average)>4 m s^(−1))markedly reducing local pollution,but weak cold air masses(ΔT24h<2°C;∣V∣_(average<)2 m s^(−1))primarily inducing pollutant transport and accumulation;(3)for warm air masses,PM_(2.5)accumulation or removal occurred in 60%and 40%of the cases,respectively:warm air masses(ΔT24h>4°C)reduced the PM_(2.5) concentration whereas weaker winds(∣V∣_(average)<2 m s^(−1))increased it;and(4)PM_(2.5) concentration decreased sharply within 4 h after the passage of strong cold air masses,but more gradually within 14 h after the passage of strong warm air masses.These results considerably improve the current understanding of the influence of cold and warm air masses on local pollution patterns.展开更多
To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume cl...To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.展开更多
The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical exp...The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass(AM) close to the ERA-Interim AM during 1989-2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation,which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source(evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass flux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass flux. A reasonable cross-equatorial mass flux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.展开更多
The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along w...The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.展开更多
For a better understanding of the air mass exchange processes between the surface and free atmos-phere in the Himalayas,a Himalayan exchange between the surface and troposphere 2007 (HEST2007) campaign was carried out...For a better understanding of the air mass exchange processes between the surface and free atmos-phere in the Himalayas,a Himalayan exchange between the surface and troposphere 2007 (HEST2007) campaign was carried out in the Rongbuk Valley,on the northern slope of Mt.Qomolangma,in June 2007.The wind,tem-perature and radiation conditions were measured during the campaign.Using these observation data,together with the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) reanalysis data,the air mass exchange between the inside of the valley and the outside of the valley is quantitatively estimated,based on a closed-valley method.The air mass is strongly injected into the Rongbuk Valley in the after-noon,which dominates the diurnal cycle,by a strong downward along-valley wind,with a maximum down-ward transfer rate of 9.4 cm s?1.The total air volume flux injected into the valley was 2.6×1011 m3 d?1 in 24 hours in June 2007,which is 15 times the total volume of the val-ley.The air mass transfer into the valley also exhibited a clear daily variation during the HEST2007 campaign,which can be affected by the synoptic situations through the adjustment of local radiation conditions.展开更多
Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fift...Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fifty samples of total suspended particle were collected seasonally from the nearshore Huaniao Island(HNI)in East China Sea(ECS)from April 2018 to January 2019;and they were analyzed for total organic carbon(TOC)content and stable carbon isotope(δ^(13)C),as well as terrestrial bio-markers including n-alkanes(C_(20)-C_(33)),n-alkanols(C_(20)-C32)and n-fatty acids(n-FAs,C_(20)-C30),to distinguish the seasonal variabili-ties of terrestrial OC sources and reveal the influence of the long-range air mass transport on these sources.The TOC-δ^(13)C values(range from−27.3‰to−24.3‰)and molecular distributions of terrestrial biomarkers both suggested that terrestrial OC contribu-tions to aerosols had significant seasonal variations.The source indices of terrestrial biomarkers(e.g.,Fossil%=82.8%for n-alkanes)revealed that the fossil fuel OC contributions,including coal burning and vehicular emission,were higher in winter,mainly because of the long-range air mass transport from the north of the East Asian continent.The terrestrial plant OC contributions were higher in summer(e.g.,Wax%=32.4%for n-alkanes),likely due to local vegetation sources from HNI and East Asian continental air masses.Cluster analysis of air mass backward-trajectories clearly showed that transport pathway plays an important role in determining the organic constituents of aerosols in China marginal seas.A comparison of these terrestrial OC contributions from different air mass origins suggested that fossil fuel OC showed less variations among various air mass origins from northern China in winter,while terrestrial plant OC sources from northern and southern China in summer contributed more than that from the air masses transported through the ECS.These results provided a basis for future quantification of terrestrial OC from different origins in marine aerosols,by combining biomarker index and carbon isotopes.展开更多
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u...The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.展开更多
The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The...The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The study found that the mean annual concentrations of Ca2+, Na+, SO42-, CI-, Mg2+, NO3-, and K+ in the basin were lower than those in other arid areas of northwestern China. The average concentrations of ions in the lower reaches of the Shule River were higher than those in the upper reaches. The results showed that the main ionic concentrations decreased with the increase of precipitation amount, indicating that heavy precipitation cannot only wash crustal aerosols out of the atmosphere, but also create a dilution effect. CI- and Na+ in precipitation had a strong and positive correlation, suggesting a common origin for the two ions. However, the excess of Na+, combined with non-marine SO42- and NO3-, indicated that some ions were contributed by terrestrial origins. In the extremely arid regions of northwestern China, the evaporation process obviously changes the original relationship between δ2H and δ18O in precipitation, and leads to dexcess values 〈8‰. δ18O and temperature were significantly correlated, suggested that temperature strongly affected the characteristics of isotopes in the study area. The δ18O value indicates a dominant effect of westerly air masses and southwest monsoon in warm months, and the integrated influence of westerly and Siberian-Mongolian polar air masses in cold months. The d-excess values were generally lower in warm months than those in cold months, indicating that post-condensation processes played a significant role in the water cycle. The results provide reliable precipitation input information that can be used in future groundwater recharge calculations in the study area.展开更多
By using the ECMWF reanalysis daily data and daily precipitation data of 80 stations in Northeast China from 1961 to 2002, the impacts of moisture transport of East Asian summer monsoon on the summer precipitation ano...By using the ECMWF reanalysis daily data and daily precipitation data of 80 stations in Northeast China from 1961 to 2002, the impacts of moisture transport of East Asian summer monsoon on the summer precipitation anomaly in Northeast China, and the relationship between the variation of moisture budget and the establishment of East Asian summer monsoon in this region are studied. The results demonstrate that the moisture of summer precipitation in Northeast China mainly originates from subtropical, South China Sea, and South Asia monsoon areas. East China and its near coastal area are the convergent region of the monsoonal moisture currents and the transfer station for the currents continually moving northward. The monsoonal moisture transport, as an important link or bridge, connects the interaction between middle and low latitude systems. In summer half year, there is a moisture sink in Northeast China where the moisture influx is greater than outflux. The advance transport and accumulation of moisture are of special importance to pentad time scale summer precipitation. The onset, retreat, and intensity change of the monsoonal rainy season over Northeast China are mainly signified by the moisture input condition along the southern border of this area. The establishment of East Asian summer monsoon in this area ranges from about 10 July to 20 August and the onset in the west is earlier than that in the east. The latitude that the monsoon can reach is gradually northward from west to east, reaching 50°N within longitude 120°-135°E. In summer, the difference of air mass transport between summers with high and low rainfall mainly lies in whether more air masses originating from lower latitudes move northward through East China and its coastal areas, consequently transporting large amounts of hot and humid air into Northeast China.展开更多
In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the obser...In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon's track and intensity, although the results are not perfect.展开更多
Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of av...Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of so4^2- was the largest followed by YO3^-, whereas among all cations, Ca^2+ concentration and the rate was the largest, and then NH4^+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which so4^2-, NO3^- and NH4^+ contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.展开更多
This work is part of a large experimental study on the distribution of internal temperatures in two similar test cells, but with different systems of coverage. The main goal of this paper is to present results on an e...This work is part of a large experimental study on the distribution of internal temperatures in two similar test cells, but with different systems of coverage. The main goal of this paper is to present results on an experimental field to determine the influence of solar radiation on the internal environmental conditions of different roof systems. Dry bulb temperature and internal surface temperatures were measured in two test cells with different roof systems (green roof and conventional ceramic roof). Their thermal performances were compared on days with differing air mass domain, based on dynamic climatic approach. This research was based on the spatial and temporal approaches of dynamic climatology, from the climatic regime of the city of Itirapina, S^o Paulo State, analysed as representative episodes. Climatic data were provided by an automatic weather station and verified by satellite imagery, and the internal temperatures of the cells were collected by thermocouples installed on the surfaces of ceilings, floors, walls, and suspended inside the buildings. The results indicate that the solar radiation is mainly responsible for the great variations in temperature and its impact on indoor environments, since there were great differences in temperature inside comparing the two days of the experiment. This refutes the notion that the outside temperature is responsible for daily variations in temperature inside buildings.展开更多
Winter synoptic conditions that produce snowfall with bitterly cold temperatures create both social and economic hazards in the capital city of Albany, NY. Sometimes these systems are forecasted in error to produce ra...Winter synoptic conditions that produce snowfall with bitterly cold temperatures create both social and economic hazards in the capital city of Albany, NY. Sometimes these systems are forecasted in error to produce rain or mixed precipitation. It is beneficial for meteorologists to better understand the commonly used 5400 and 1300 GPM line to better forecast rain versus snow events. Other studies have looked into the use of the 5400 GPM (540 dm) line but none have assessed the validity of this boundary with respect to weather type characterization at Albany. This study aims to determine the reliability of the widely referenced guides for depicting the rain-snow line, and improve forecast aids for the vertical atmosphere during winter precipitation events. The mean daily 500, 850, 925 and 1000 mb heights and weather type frequency of the Spatial Synoptic Classification between November and March of 1980 - 2012 are analyzed. Results indicate that the standard vertical boundaries are inaccurate indicators of a rain versus snow event in Albany. More reasonable rain-snow cut offs for the 1000 - 500 and 1000 - 850 mb thicknesses are 5222 and 1262 GPM. For the 1000 - 925 mb level, 606 GPM is a helpful aid of identifying the rain-snow boundary. Further scrutinizing by weather type indicates that the rain-snow boundary also varies depending on what air mass/weather type is present on a given day. For instance, when the most prominent weather type is observed over Albany (Dry Polar), at the 1000 - 850 mb and 1000 - 500 mb layers, a boundary of 1242 GPM and 5152 GPM is found to be most representative. Results indicate only for the rarest of winter weather types observed over Albany, Moist Tropical, are the standard cut offs useful. Determining the reliability of this precipitation indicator at a specific station, like Albany, could enable meteorologists in other regions of the country to draw parallels between weather type, precipitation, and thickness in their forecast zones.展开更多
The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly dia...The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly diagnose the air mass transport between the planetary boundary layer(PBL) and the stratosphere over the AM region during 1992–2017 using the Lagrangian particle dispersion model FLEXPART based on the ERA-Interim reanalysis data.The results show that both the downward and upward deep STEs exhibit a detectable increasing trend,while the latter,namely,the deep troposphere-to-stratosphere transport(DTST),is relatively more significant.Further analysis reveals that the long-term trend of DTST over the AM region could be partly attributed to changes in the Pacific Walker circulation and the air temperature(especially at upper levels).Additionally,it is found that DTST increases markedly over the tropical oceanic regions,while the increasing DTST into the stratosphere can be attributed to the enhanced air masses originated from the PBL over the terrestrial regions,where large amounts of pollutant emissions occur.The results imply that the influence of the DTST on the chemical composition and the climate of the stratosphere over the AM region is expected to become increasingly important,and is thereby of relevance to climate projection in an evolving climate.展开更多
Variations of levels,possible source and air mass transmission were investigated for 16 USEPA priority-controlled PAHs in PM2.5 during 2018 Chinese Spring Festival(CSF)in Xiangyang City,central China which is the Nort...Variations of levels,possible source and air mass transmission were investigated for 16 USEPA priority-controlled PAHs in PM2.5 during 2018 Chinese Spring Festival(CSF)in Xiangyang City,central China which is the North-South pollutant airmass transport channel of China.Totally 37 samples were collected.Mass concentrations of 16 PAHs for the Pre–CSF day(Pre–CSFD),during the CSF day(CSFD)and after the CSF day(Af–CSFD)are 33.78±17.68 ng/m3,22.98±6.49 ng/m3,and 8.99±4.44 ng/m3,respectively.High resolution samples showed that 16 PAHs are higher in the morning(06:00–11:00)or afternoon(11:30–16:30),than those in the evening(17:00–22:00)and at night(22:30–05:30),whereas the result is reversed during the CSFD.Fireworks burning can obviously increase the mass concentration of PAHs.Air mass trajectory indicated that Xiangyang is a sink area of pollutants for northwest and southeast,and the sources of the northeast and southwest.The air mass only can be transmitted out through northeast and southwest.It is effective for improvement of air quality in Wuhan and Hunan to control fireworks emission in Henan and local areas.Fireworks burning was an important source for PAHs during CSFD,biomass,coal combustion,and traffic emission were the main sources of PAHs for Pre–CSFD and Af–CSFD periods.The health risk on the CSFD was higher than the acceptable levels,especially during the intensive fireworks burning,the risk value far exceed 1.0×10^-4,controlling burning fireworks is required.展开更多
Authors have studied the transformation processes of cold air over land in East Asia for eight cases which occurred in different months of 1981.First,the surface eddy sensible and latent heat fluxes,and drag coefficie...Authors have studied the transformation processes of cold air over land in East Asia for eight cases which occurred in different months of 1981.First,the surface eddy sensible and latent heat fluxes,and drag coefficient were estimated according to the approach of similarity theory.Then,the apparent heat source,the apparent moisture sink,and solar and long-wave radiative heating(or cooling)were further calculated through the budget method and physical parameterization algorithm.It has been found that the cold air immediately starts the transformation process over land once it moves away from its region of origin.In winter,the degree of transformation of cold air mass gradually intensi- fied as it travelled southeastward;while arriving in the ocean,the cold air mass underwent the most significant transfor- mation process.In summer,the most vigorous transformation of thermal and moisture fields was observed in North China and Mongolian region,with much greater intensity than that in winter.展开更多
The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient...The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.展开更多
An AMT-model,consisting of a trajectory model and a one-dimensional boundary layer model,is tested for trajectories arriving in Taiyuan to study the possibility of using it in Taiyuan.The sensitivity of the model to t...An AMT-model,consisting of a trajectory model and a one-dimensional boundary layer model,is tested for trajectories arriving in Taiyuan to study the possibility of using it in Taiyuan.The sensitivity of the model to the different processes was studied.Some parameters of the model were modified for the purpose of forecast- ing in specific mountainous terrain and dry climate conditions.Results of examples which we have worked out for Taiyuan circumstances for the periods of July(summer)1985 and January(winter)1986,show that the 12h runs of the AMT-model are able to reproduce(on historical data)the sounding of Taiyuan.The AMT-model contributes fruitfully to short-range weather forecasts(12—36h ahead)during periods of severe air pollution and when cold waves occur.展开更多
Toxic elements in the atmosphere can enter and accumulate in the human body, seriously impacting human health. In this study, we analyzed a 14-year (1995-2008) measurement of three toxic elements (As, Cd and Cr) i...Toxic elements in the atmosphere can enter and accumulate in the human body, seriously impacting human health. In this study, we analyzed a 14-year (1995-2008) measurement of three toxic elements (As, Cd and Cr) in PMlo in Hong Kong, China. The pollution of these toxic elements in Hong Kong was not serious. The trend analysis showed that As and Cr in PM10 increased at a statistically significant level (p〈0.05) during the 14-year period, while the Cd in PM10 did not change significantly. Typical seasonal variations were observed for all three toxic elements, largely in relation to the Asian monsoon. Hourly 10-day backward trajectories were computed and cate- gorised into four groups. The continental air masses showed much higher concentrations of the three toxic elements than the marine air masses. The abundances of As and Cd in the PM10 were much higher in the continental air masses than those in the marine air masses, while the abundances of Cr showed an opposite pattern. The trends of the three toxic elements in East China's air mass were consistent with those in the overall data set ofHong Kong. Examination of the toxic element data recorded at urban sites and a roadside site also indicated a large contribution of external air masses to particulate As and Cd in Hong Kong. These results suggest that the long-range transport from the mainland of China is the dominant contributor to particulate As and Cd, while both local and long-distance sources determine the particulate Cr in Hong Kong.展开更多
基金supported by funds from the Scientific Research Projects of High-level Talents of the Department of Human Resources and Social Security of Anhui Province (Grant No.2009Z019)the State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry (Grant No.LAPC-KF-201105)
文摘One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.
基金Supported by the State Scholarship Fund of China(202305330011)National Natural Science Foundation of China(41975004)Hangzhou Science and Technology Development Project(2022ZDSJ0298).
文摘Local air pollution is strongly affected by synoptic weather systems,such as fronts,troughs,low-altitude vortices,or high-altitude ridges.Nevertheless,few studies have analyzed the meteorological properties of cold or warm air masses associated to these systems and their impact on local air quality.In this study,hourly observations of fine particulate matter(diameter of up to 2.5µm,i.e.,PM_(2.5)),wind(V),temperature(T),pressure(P),and precipitation(R),acquired in Hangzhou in 2014-2020,were analyzed.From this analysis,weather patterns were categorized into 27 types;89 and 94 cases illustrating the passage of warm and cold air masses over Hangzhou were identified,respectively;the influence of air mass temperature,wind speed,and wind direction on PM_(2.5) concentrations and local accumulation or removal was quantified.The main results are as follows.(1)Pollution events occurred more frequently for cold than for warm air masses,but average pollutant concentration was lower for cold air masses;(2)48%of the cold air mass cases corresponded to PM_(2.5) decreases and 52%to PM_(2.5) increases,with strong cold air masses(ΔT_(24h)>4°C;∣V∣_(average)>4 m s^(−1))markedly reducing local pollution,but weak cold air masses(ΔT24h<2°C;∣V∣_(average<)2 m s^(−1))primarily inducing pollutant transport and accumulation;(3)for warm air masses,PM_(2.5)accumulation or removal occurred in 60%and 40%of the cases,respectively:warm air masses(ΔT24h>4°C)reduced the PM_(2.5) concentration whereas weaker winds(∣V∣_(average)<2 m s^(−1))increased it;and(4)PM_(2.5) concentration decreased sharply within 4 h after the passage of strong cold air masses,but more gradually within 14 h after the passage of strong warm air masses.These results considerably improve the current understanding of the influence of cold and warm air masses on local pollution patterns.
基金financed by the Ministry of Science and Technology of the People’s Republic of China (Grant No2009CB421403)the Chinese Academy of Sciences(Grant Nos KZCX2-YW-Q11-01 and LAPC-KF-2008-12)
文摘To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.
基金Natural Science Foundation of Jiangsu Province grant(BK2012465)National Natural Science Foundation of China(41205065,41475045,41005046)+1 种基金National Basic Research Program of China(2010CB428602)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution
文摘The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass(AM) close to the ERA-Interim AM during 1989-2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation,which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source(evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass flux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass flux. A reasonable cross-equatorial mass flux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.
基金supported by the Beijing Municipal Science and Technology Project [grant number 2171100004417008]the National Natural Science Foundation of China [grant numbers 41575050,41875049,and 41805034]
文摘The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.
基金financed by the National Natural Science Foundation of China (Grant No.40533018)the Ministry of Science and Technology of the People’s Republic of China (Grant No.2009CB421403)the Chinese Academy of Sciences (Grant Nos.KZCX3-SW-231 and 8-070203)
文摘For a better understanding of the air mass exchange processes between the surface and free atmos-phere in the Himalayas,a Himalayan exchange between the surface and troposphere 2007 (HEST2007) campaign was carried out in the Rongbuk Valley,on the northern slope of Mt.Qomolangma,in June 2007.The wind,tem-perature and radiation conditions were measured during the campaign.Using these observation data,together with the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) reanalysis data,the air mass exchange between the inside of the valley and the outside of the valley is quantitatively estimated,based on a closed-valley method.The air mass is strongly injected into the Rongbuk Valley in the after-noon,which dominates the diurnal cycle,by a strong downward along-valley wind,with a maximum down-ward transfer rate of 9.4 cm s?1.The total air volume flux injected into the valley was 2.6×1011 m3 d?1 in 24 hours in June 2007,which is 15 times the total volume of the val-ley.The air mass transfer into the valley also exhibited a clear daily variation during the HEST2007 campaign,which can be affected by the synoptic situations through the adjustment of local radiation conditions.
基金This study was supported by the National Natural Science Foundation of China(No.U1706219).This is MCTL(Key Laboratory of Marine Chemistry Theory and Technology)contribution#237.
文摘Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fifty samples of total suspended particle were collected seasonally from the nearshore Huaniao Island(HNI)in East China Sea(ECS)from April 2018 to January 2019;and they were analyzed for total organic carbon(TOC)content and stable carbon isotope(δ^(13)C),as well as terrestrial bio-markers including n-alkanes(C_(20)-C_(33)),n-alkanols(C_(20)-C32)and n-fatty acids(n-FAs,C_(20)-C30),to distinguish the seasonal variabili-ties of terrestrial OC sources and reveal the influence of the long-range air mass transport on these sources.The TOC-δ^(13)C values(range from−27.3‰to−24.3‰)and molecular distributions of terrestrial biomarkers both suggested that terrestrial OC contribu-tions to aerosols had significant seasonal variations.The source indices of terrestrial biomarkers(e.g.,Fossil%=82.8%for n-alkanes)revealed that the fossil fuel OC contributions,including coal burning and vehicular emission,were higher in winter,mainly because of the long-range air mass transport from the north of the East Asian continent.The terrestrial plant OC contributions were higher in summer(e.g.,Wax%=32.4%for n-alkanes),likely due to local vegetation sources from HNI and East Asian continental air masses.Cluster analysis of air mass backward-trajectories clearly showed that transport pathway plays an important role in determining the organic constituents of aerosols in China marginal seas.A comparison of these terrestrial OC contributions from different air mass origins suggested that fossil fuel OC showed less variations among various air mass origins from northern China in winter,while terrestrial plant OC sources from northern and southern China in summer contributed more than that from the air masses transported through the ECS.These results provided a basis for future quantification of terrestrial OC from different origins in marine aerosols,by combining biomarker index and carbon isotopes.
基金supported by the National Natural Science Foundation of China(42161007)the Scientific Research Program for Higher Education Institutions of Gansu Province(2021B-081)the Natural Science Foundation of Gansu Province(22JR5RA074).
文摘The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.
基金supported by the National Natural Science Foundation of China(41271039)the Open Foundation of Key Laboratory of Western China’s Environmental System(Ministry of Education)Lanzhou University and the Fundamental Research Funds for the Central Universities(lzujbky-2015-bt01)
文摘The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The study found that the mean annual concentrations of Ca2+, Na+, SO42-, CI-, Mg2+, NO3-, and K+ in the basin were lower than those in other arid areas of northwestern China. The average concentrations of ions in the lower reaches of the Shule River were higher than those in the upper reaches. The results showed that the main ionic concentrations decreased with the increase of precipitation amount, indicating that heavy precipitation cannot only wash crustal aerosols out of the atmosphere, but also create a dilution effect. CI- and Na+ in precipitation had a strong and positive correlation, suggesting a common origin for the two ions. However, the excess of Na+, combined with non-marine SO42- and NO3-, indicated that some ions were contributed by terrestrial origins. In the extremely arid regions of northwestern China, the evaporation process obviously changes the original relationship between δ2H and δ18O in precipitation, and leads to dexcess values 〈8‰. δ18O and temperature were significantly correlated, suggested that temperature strongly affected the characteristics of isotopes in the study area. The δ18O value indicates a dominant effect of westerly air masses and southwest monsoon in warm months, and the integrated influence of westerly and Siberian-Mongolian polar air masses in cold months. The d-excess values were generally lower in warm months than those in cold months, indicating that post-condensation processes played a significant role in the water cycle. The results provide reliable precipitation input information that can be used in future groundwater recharge calculations in the study area.
基金the National Natural Science Foundation of China under Grant Nos. 40633016 , 40575047 the Special Social Public Welfare Foundation of the Ministry of Science and Technology of China+1 种基金 the Open Foundation of Wuhan Institute of Heavy Rain under Grant No. IHR2006K05 the Special Foundation of Climate Change of China Meteorological Administration under Grant CCSF2006-18.
文摘By using the ECMWF reanalysis daily data and daily precipitation data of 80 stations in Northeast China from 1961 to 2002, the impacts of moisture transport of East Asian summer monsoon on the summer precipitation anomaly in Northeast China, and the relationship between the variation of moisture budget and the establishment of East Asian summer monsoon in this region are studied. The results demonstrate that the moisture of summer precipitation in Northeast China mainly originates from subtropical, South China Sea, and South Asia monsoon areas. East China and its near coastal area are the convergent region of the monsoonal moisture currents and the transfer station for the currents continually moving northward. The monsoonal moisture transport, as an important link or bridge, connects the interaction between middle and low latitude systems. In summer half year, there is a moisture sink in Northeast China where the moisture influx is greater than outflux. The advance transport and accumulation of moisture are of special importance to pentad time scale summer precipitation. The onset, retreat, and intensity change of the monsoonal rainy season over Northeast China are mainly signified by the moisture input condition along the southern border of this area. The establishment of East Asian summer monsoon in this area ranges from about 10 July to 20 August and the onset in the west is earlier than that in the east. The latitude that the monsoon can reach is gradually northward from west to east, reaching 50°N within longitude 120°-135°E. In summer, the difference of air mass transport between summers with high and low rainfall mainly lies in whether more air masses originating from lower latitudes move northward through East China and its coastal areas, consequently transporting large amounts of hot and humid air into Northeast China.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos KZCX2-YW-202 and KZCX2-YW-Q03-3)the Chinese Special Scientific Research Project for Public Interest (Grant No GYHY200906004)
文摘In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon's track and intensity, although the results are not perfect.
基金Supported by the Cooperation Project Study on Impacts of Atmospheric Nitrogen and Phosphorous Input on Water Quality granted by the NSFC (No.40110734) and The Grants Committee of Hong Kong (No.N-HKUST612/01)
文摘Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of so4^2- was the largest followed by YO3^-, whereas among all cations, Ca^2+ concentration and the rate was the largest, and then NH4^+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which so4^2-, NO3^- and NH4^+ contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.
文摘This work is part of a large experimental study on the distribution of internal temperatures in two similar test cells, but with different systems of coverage. The main goal of this paper is to present results on an experimental field to determine the influence of solar radiation on the internal environmental conditions of different roof systems. Dry bulb temperature and internal surface temperatures were measured in two test cells with different roof systems (green roof and conventional ceramic roof). Their thermal performances were compared on days with differing air mass domain, based on dynamic climatic approach. This research was based on the spatial and temporal approaches of dynamic climatology, from the climatic regime of the city of Itirapina, S^o Paulo State, analysed as representative episodes. Climatic data were provided by an automatic weather station and verified by satellite imagery, and the internal temperatures of the cells were collected by thermocouples installed on the surfaces of ceilings, floors, walls, and suspended inside the buildings. The results indicate that the solar radiation is mainly responsible for the great variations in temperature and its impact on indoor environments, since there were great differences in temperature inside comparing the two days of the experiment. This refutes the notion that the outside temperature is responsible for daily variations in temperature inside buildings.
文摘Winter synoptic conditions that produce snowfall with bitterly cold temperatures create both social and economic hazards in the capital city of Albany, NY. Sometimes these systems are forecasted in error to produce rain or mixed precipitation. It is beneficial for meteorologists to better understand the commonly used 5400 and 1300 GPM line to better forecast rain versus snow events. Other studies have looked into the use of the 5400 GPM (540 dm) line but none have assessed the validity of this boundary with respect to weather type characterization at Albany. This study aims to determine the reliability of the widely referenced guides for depicting the rain-snow line, and improve forecast aids for the vertical atmosphere during winter precipitation events. The mean daily 500, 850, 925 and 1000 mb heights and weather type frequency of the Spatial Synoptic Classification between November and March of 1980 - 2012 are analyzed. Results indicate that the standard vertical boundaries are inaccurate indicators of a rain versus snow event in Albany. More reasonable rain-snow cut offs for the 1000 - 500 and 1000 - 850 mb thicknesses are 5222 and 1262 GPM. For the 1000 - 925 mb level, 606 GPM is a helpful aid of identifying the rain-snow boundary. Further scrutinizing by weather type indicates that the rain-snow boundary also varies depending on what air mass/weather type is present on a given day. For instance, when the most prominent weather type is observed over Albany (Dry Polar), at the 1000 - 850 mb and 1000 - 500 mb layers, a boundary of 1242 GPM and 5152 GPM is found to be most representative. Results indicate only for the rarest of winter weather types observed over Albany, Moist Tropical, are the standard cut offs useful. Determining the reliability of this precipitation indicator at a specific station, like Albany, could enable meteorologists in other regions of the country to draw parallels between weather type, precipitation, and thickness in their forecast zones.
基金Supported by the National Key Research and Development Program of China (2023YFC3010700)Second Tibetan Plateau Comprehensive Scientific Expedition and Research Program (2019QZKK0105)Science and Technology Development Fund of Chinese Academy of Meteorological Sciences (2023KJ027 and 2024KJ012)。
文摘The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly diagnose the air mass transport between the planetary boundary layer(PBL) and the stratosphere over the AM region during 1992–2017 using the Lagrangian particle dispersion model FLEXPART based on the ERA-Interim reanalysis data.The results show that both the downward and upward deep STEs exhibit a detectable increasing trend,while the latter,namely,the deep troposphere-to-stratosphere transport(DTST),is relatively more significant.Further analysis reveals that the long-term trend of DTST over the AM region could be partly attributed to changes in the Pacific Walker circulation and the air temperature(especially at upper levels).Additionally,it is found that DTST increases markedly over the tropical oceanic regions,while the increasing DTST into the stratosphere can be attributed to the enhanced air masses originated from the PBL over the terrestrial regions,where large amounts of pollutant emissions occur.The results imply that the influence of the DTST on the chemical composition and the climate of the stratosphere over the AM region is expected to become increasingly important,and is thereby of relevance to climate projection in an evolving climate.
基金supported by the National Key Research and Development Program of China(No.2017YFC0212603)the National Natural Science Foundation of China(No.41773124)+2 种基金the Open Research Program of Laboratory of Basin Hydrology and Wetland Eco-restoration,China University of Geosciences(Wuhan)(No.BHWER201503(A))the Open Research Fund of Hubei Key Laboratory of Mine Environmental Pollution Con-trol&Remediation,Hubei Polytechnic University(No.201702)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGL170208)。
文摘Variations of levels,possible source and air mass transmission were investigated for 16 USEPA priority-controlled PAHs in PM2.5 during 2018 Chinese Spring Festival(CSF)in Xiangyang City,central China which is the North-South pollutant airmass transport channel of China.Totally 37 samples were collected.Mass concentrations of 16 PAHs for the Pre–CSF day(Pre–CSFD),during the CSF day(CSFD)and after the CSF day(Af–CSFD)are 33.78±17.68 ng/m3,22.98±6.49 ng/m3,and 8.99±4.44 ng/m3,respectively.High resolution samples showed that 16 PAHs are higher in the morning(06:00–11:00)or afternoon(11:30–16:30),than those in the evening(17:00–22:00)and at night(22:30–05:30),whereas the result is reversed during the CSFD.Fireworks burning can obviously increase the mass concentration of PAHs.Air mass trajectory indicated that Xiangyang is a sink area of pollutants for northwest and southeast,and the sources of the northeast and southwest.The air mass only can be transmitted out through northeast and southwest.It is effective for improvement of air quality in Wuhan and Hunan to control fireworks emission in Henan and local areas.Fireworks burning was an important source for PAHs during CSFD,biomass,coal combustion,and traffic emission were the main sources of PAHs for Pre–CSFD and Af–CSFD periods.The health risk on the CSFD was higher than the acceptable levels,especially during the intensive fireworks burning,the risk value far exceed 1.0×10^-4,controlling burning fireworks is required.
文摘Authors have studied the transformation processes of cold air over land in East Asia for eight cases which occurred in different months of 1981.First,the surface eddy sensible and latent heat fluxes,and drag coefficient were estimated according to the approach of similarity theory.Then,the apparent heat source,the apparent moisture sink,and solar and long-wave radiative heating(or cooling)were further calculated through the budget method and physical parameterization algorithm.It has been found that the cold air immediately starts the transformation process over land once it moves away from its region of origin.In winter,the degree of transformation of cold air mass gradually intensi- fied as it travelled southeastward;while arriving in the ocean,the cold air mass underwent the most significant transfor- mation process.In summer,the most vigorous transformation of thermal and moisture fields was observed in North China and Mongolian region,with much greater intensity than that in winter.
基金financially supported by the National Instrumentation Program (No. 2011YQ17006702)the National Natural Science Foundation of China (No. 21027013 and No. 81102413)Fundamental Research Program of Shenzhen (No. JC201005280634A)
文摘The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.
文摘An AMT-model,consisting of a trajectory model and a one-dimensional boundary layer model,is tested for trajectories arriving in Taiyuan to study the possibility of using it in Taiyuan.The sensitivity of the model to the different processes was studied.Some parameters of the model were modified for the purpose of forecast- ing in specific mountainous terrain and dry climate conditions.Results of examples which we have worked out for Taiyuan circumstances for the periods of July(summer)1985 and January(winter)1986,show that the 12h runs of the AMT-model are able to reproduce(on historical data)the sounding of Taiyuan.The AMT-model contributes fruitfully to short-range weather forecasts(12—36h ahead)during periods of severe air pollution and when cold waves occur.
文摘Toxic elements in the atmosphere can enter and accumulate in the human body, seriously impacting human health. In this study, we analyzed a 14-year (1995-2008) measurement of three toxic elements (As, Cd and Cr) in PMlo in Hong Kong, China. The pollution of these toxic elements in Hong Kong was not serious. The trend analysis showed that As and Cr in PM10 increased at a statistically significant level (p〈0.05) during the 14-year period, while the Cd in PM10 did not change significantly. Typical seasonal variations were observed for all three toxic elements, largely in relation to the Asian monsoon. Hourly 10-day backward trajectories were computed and cate- gorised into four groups. The continental air masses showed much higher concentrations of the three toxic elements than the marine air masses. The abundances of As and Cd in the PM10 were much higher in the continental air masses than those in the marine air masses, while the abundances of Cr showed an opposite pattern. The trends of the three toxic elements in East China's air mass were consistent with those in the overall data set ofHong Kong. Examination of the toxic element data recorded at urban sites and a roadside site also indicated a large contribution of external air masses to particulate As and Cd in Hong Kong. These results suggest that the long-range transport from the mainland of China is the dominant contributor to particulate As and Cd, while both local and long-distance sources determine the particulate Cr in Hong Kong.