期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Factors Influencing the Spatial Variability of Air Temperature Urban Heat Island Intensity in Chinese Cities
1
作者 Heng LYU Wei WANG +3 位作者 Keer ZHANG Chang CAO Wei XIAO Xuhui LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期817-829,共13页
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat... Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land. 展开更多
关键词 air temperature urban heat island spatial variations biophysical drivers Chinese cities climate model
下载PDF
Surface air temperature change in the Wuyi Mountains,southeast China
2
作者 QIN Yihui WEI Yuxing +6 位作者 LU Jiayi MAO Jiahui CHEN Xingwei GAO Lu CHEN Ying LIU Meibing DENG Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1992-2004,共13页
Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 ... Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains. 展开更多
关键词 Climate change Surface air temperature Temporal and spatial changes Mann-Kendall nonparametric test Wuyi Mountains
下载PDF
Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015
3
作者 Cuijuan Sui Lejiang Yu +2 位作者 Alexey YuKarpechko Licheng Feng Shan Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期48-58,共11页
The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,prev... The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations. 展开更多
关键词 Atlantic Multidecadal Oscillation(AMO) Interdecadal Pacific Oscillation(IPO) surface air temperature ANTARCTIC wavetrain Rossby wave source
下载PDF
Urban Surroundings Influence on Air Temperature in a Small Urban Area of Curitiba-Brazil
4
作者 Cristiane Rossatto Candido Francine Aidie Rossi 《Computational Water, Energy, and Environmental Engineering》 2024年第2期95-111,共17页
The formation of urban climates constitutes a distinctive system intrinsically linked to the urban environment. This study aims to delve into the impact of the urban environment on climatic variables. The Urban Weathe... The formation of urban climates constitutes a distinctive system intrinsically linked to the urban environment. This study aims to delve into the impact of the urban environment on climatic variables. The Urban Weather Generator (UWG) algorithm was employed to generate climatic data, facilitating the creation of an epw climate file that corresponds to the urban characteristics surrounding the Centro Politécnico campus at the Federal University of Paraná (UFPR). Comprehensive analyses encompassing land use, occupancy patterns, albedo, surface absorption, anthropogenic heat, and architectural attributes were conducted. A comparative assessment between the UWG-derived air temperature values and meteorological station data revealed that the UWG effectively characterizes the air temperature patterns around the UFPR campus. The anticipated air temperature values consistently surpass the original dataset (SWERA), which was utilized as input, primarily during the hours from 3 p.m. to 7 a.m., showcasing the unmistakable urban heat island phenomenon. 展开更多
关键词 Urban Weather Generator air temperature Urban Surroundings
下载PDF
Absorptive root-multidimension strategy links air temperature and species distribution in a montane forest
5
作者 Zuhua Wang Min Liu +5 位作者 Long Li Jianwei Hou Xiaodong Zhang Haibo Li Chuandong Yang Lilin Yang 《Forest Ecosystems》 SCIE CSCD 2023年第3期307-315,共9页
Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorpti... Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorptive root traits. Seven functional traits of the absorptive roots of 240 individuals of 52 species, soil properties and air temperature were measured along an elevational gradient on Mt. Fanjingshan, Tongren City, Guizhou, and then the direct and indirect effects of these controls on species distribution were detected.Results: Absorptive roots adapted to air temperature with two strategies. The first strategy was positively associated with the specific root area(SRA) and specific root length(SRL) and was negatively associated with the root tissue density(RTD), representing the classic root economics spectrum(RES). The second strategy was represented by the trade-off between root diameter, mycorrhizal fungi colonization(MF) and SRL, representing the collaboration gradient with “do it yourself” resource uptake ranging from “outsourcing” to mycorrhizal resource uptake. Air temperature regulated species distribution in six ways: directly reducing species importance value;indirectly increasing the species importance value by reducing soil nitrogen content or increasing soil pH by reducing soil moisture inducing absorptive roots to change from “do it yourself” resource absorption to “outsourcing” resource absorption;indirectly decreasing the species importance value by decreasing soil moisture to change from“outsourcing”resource absorption to “do it yourself” resource absorption;indirectly increasing the species importance value with increasing soil pH by reducing soil moisture resulting in absorptive root traits turning into nutrient foraging traits;and indirectly decreasing the species importance value by promoting absorptive root traits to nutrient conservation traits.Conclusions: Absorptive root traits play a crucial role in the regulation of species distribution through multiapproaches of air temperature. 展开更多
关键词 air temperature Absorptive roots Functional traits Structural equation models Mt.Fanjingshan
下载PDF
Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China
6
作者 HE Tian LIU Fuyuan +1 位作者 WANG Ao FEI Zhanbo 《Chinese Geographical Science》 SCIE CSCD 2023年第4期751-763,共13页
Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather sta... Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather station networks is insufficient,especially in sparsely populated regions,greatly limiting the accuracy of estimates of spatially distributed Ta.Due to their continuous spatial coverage,remotely sensed land surface temperature(LST)data provide the possibility of exploring spatial estimates of Ta.However,because of the complex interaction of land and climate,retrieval of Ta from the LST is still far from straightforward.The estimation accuracy varies greatly depending on the model,particularly for maximum Ta.This study estimated monthly average daily minimum temperature(Tmin),average daily maximum temperature(Tmax)and average daily mean temperature(Tmean)over the Loess Plateau in China based on Moderate Resolution Imaging Spectroradiometer(MODIS)LST data(MYD11A2)and some auxiliary data using an artificial neural network(ANN)model.The data from 2003 to 2010 were used to train the ANN models,while 2011 to 2012 weather station temperatures were used to test the trained model.The results showed that the nighttime LST and mean LST provide good estimates of Tmin and Tmean,with root mean square errors(RMSEs)of 1.04℃ and 1.01℃,respectively.Moreover,the best RMSE of Tmax estimation was 1.27℃.Compared with the other two published Ta gridded datasets,the produced 1 km×1 km dataset accurately captured both the temporal and spatial patterns of Ta.The RMSE of Tmin estimation was more sensitive to elevation,while that of Tmax was more sensitive to month.Except for land cover type as the input variable,which reduced the RMSE by approximately 0.01℃,the other vegetation-related variables did not improve the performance of the model.The results of this study indicated that ANN,a type of machine learning method,is effective for long-term and large-scale Ta estimation. 展开更多
关键词 air temperature land surface temperature(LST) artificial neural network(ANN) remote sensing climate change Loess Plateau China
下载PDF
Detecting and Adjusting Temporal Inhomogeneity in Chinese Mean Surface Air Temperature Data 被引量:66
7
作者 李庆祥 刘小宁 +2 位作者 张洪政 Thomas C.PETERSON David R.EASTERLING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第2期260-268,共9页
Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface a... Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China. 展开更多
关键词 China surface air temperature HOMOGENEITY testing and adjusting
下载PDF
A Decadal Shift of Summer Surface Air Temperature over Northeast Asia around the Mid-1990s 被引量:16
8
作者 CHEN Wei LU Riyu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期735-742,共8页
This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the ... This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China. 展开更多
关键词 surface air temperature Northeast Asia decadal shift mid-1990s South China rainfall
下载PDF
Probabilistic Multimodel Ensemble Prediction of Decadal Variability of East Asian Surface Air Temperature Based on IPCC-AR5 Near-term Climate Simulations 被引量:11
9
作者 王佳 智协飞 陈钰文 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1129-1142,共14页
Based on near-term climate simulations for IPCC-AR5 (The Fifth Assessment Report), probabilistic multimodel ensemble prediction (PMME) of decadal variability of surface air temperature in East Asia (20°-50&#... Based on near-term climate simulations for IPCC-AR5 (The Fifth Assessment Report), probabilistic multimodel ensemble prediction (PMME) of decadal variability of surface air temperature in East Asia (20°-50°N, 100°- 145°E) was conducted using the multivariate Gaussian ensemble kernel dressing (GED) methodology. The ensemble system exhibited high performance in hindcasting the deeadal (1981-2010) mean and trend of temperature anomalies with respect to 1961-90, with a RPS of 0.94 and 0.88 respectively. The interpretation of PMME for future decades (2006-35) over East Asia was made on the basis of the bivariate probability density of the mean and trend. The results showed that, under the RCP4.5 (Representative Concentration Pathway 4.5 W m-2) scenario, the annual mean temperature increases on average by about 1.1-1.2 K and the temperature trend reaches 0.6-0.7 K (30 yr)-1. The pattern for both quantities was found to be that the temperature increase will be less intense in the south. While the temperature increase in terms of the 30-yr mean was found to be virtually certain, the results for the 30-yr trend showed an almost 25% chance of a negative value. This indicated that, using a multimodel ensemble system, even if a longer-term warming exists for 2006-35 over East Asia, the trend for temperature may produce a negative value. Temperature was found to be more affected by seasonal variability, with the increase in temperature over East Asia more intense in autumn (mainly), faster in summer to the west of 115°E, and faster still in autumn to the east of 115°E. 展开更多
关键词 decadal climate prediction PMME GED surface air temperature East Asia
下载PDF
Regional-scale Surface Air Temperature and East Asian Summer Monsoon Changes during the Last Millennium Simulated by the FGOALS-gl Climate System Model 被引量:12
10
作者 MAN Wenmin ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期765-778,共14页
The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution vers... The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation. 展开更多
关键词 last millennium surface air temperature spatial patterns regional-scale variation East Asian summer monsoon
下载PDF
Temporal and spatial variation of annual mean air temperature in arid and semiarid region in northwest China over a recent 46 year period 被引量:24
11
作者 Chen, ShaoYong Shi, YuanYuan +1 位作者 Guo, YuZhen Zheng, YanXiang 《Journal of Arid Land》 SCIE 2010年第2期87-97,共11页
We analyzed the 1961-2006 mean surface air temperature data of 138 stations in China’s northwest arid and semi-arid areas(CNASA),to measure climate change in terms of annual mean air temperature changes.We used metho... We analyzed the 1961-2006 mean surface air temperature data of 138 stations in China’s northwest arid and semi-arid areas(CNASA),to measure climate change in terms of annual mean air temperature changes.We used methods of linear regression analysis,multinomial fitting,Empirical Or-thogonal Function(EOF),Rotated Empirical Orthogonal Function(REOF),Mann-Kendall,Glide T-examination,wavelet analysis and power spectrum analysis.The results show that(1) the warming rate of the annual mean air temperature in CNASA was 0.35oC/10a during the 1961-2006 study period.Some places in the west part of Xinjiang and east part of the Qinghai plateau,which is impacted by the terrain of leeward slope,exhibit smaller increasing trends.However,the majority of region has shown distinct warming in line with general global warming;(2) The standard deviation of the annual mean temperature distribution is non-uniform.The south Xinjiang and east Qinghai-south Gansu areas show relatively small standard deviations,but the inter-annual variation in annual mean air temperature in the greater part of the region is high;(3) Inner Mongolia,Shaanxi,Gansu,Ningxia and Tarim Basin are the areas where the temperature changes are most sensitive to the environment.The degree of uniformity in annual mean air temperature increase is higher in the arid and semi-arid area.From the early 1970s,the trend in tempera-ture changed from a decrease to an increase,and there was a marked increase in mean temperature in 1986.After that mean temperature went through a period of rapid increase.The entire area’s 10 hottest years all occurred in or since the 1990s,and 90% of various sub-districts’ hottest years also occurred after 1990.The process of temperature change appears to have a roughly 5-year and a 10-year cycle;(4) An-nual mean air temperature variation has regional differences.In Inner Mongolia-Xinjiang and Shaanxi-Gansu-Ningxia-Qinghai areas,the temperature variation in their northern areas was very different from that in their southern areas;(5) Using the REOF method we divided the region into 4 sub-regions:the Northern region,the Plateau region,the Southern Xinjiang region and the Eastern region.The region’s annual mean air temperature transition has regional differences.The Plateau and Southern Xinjiang re-gions got warmer steadily without any obvious acceleration in the rate of warming.The Northern region’s warming started about 5-years earlier than that of the low latitude Eastern region.The ’Startup region’ of the Qinghai-Tibet Plateau,appears to undergo temperature changes 3 to 10 years earlier than the other regions,and exhibits inter-decadal variations 1 to 2 years ahead of the other regions. 展开更多
关键词 northwest area of China annual mean air temperature climatic warming
下载PDF
Enhancement of the Summer North Atlantic Oscillation Influence on Northern Hemisphere Air Temperature 被引量:11
12
作者 袁薇 孙建奇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1209-1214,共6页
This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit ... This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit (CRU) data. The results show that the SNAO is related to NH land SAT, but this linkage has varied on decadal timescales over the last 52 years, with a strong connection appearing after the late 1970s, but a weak connection before. The mechanism governing the relationship between the SNAO and NH land SAT is discussed based on the NCEP/NCAR reanalysis data. The results indicate that such a variable relationship may result from changes of the SNAO mode around the late 1970s. The SNAO pattern was centered mainly over the North Atlantic before the late 1970s, and thus had a weak influence on the NH land SAT. But after the late 1970s, the SNAO pattern shifted eastward and its southern center was enhanced in magnitude and extent, which transported the SNAO signal to the North Atlantic surrounding continents and even to central East Asia via an upper level wave train along the Asian jet. 展开更多
关键词 Summer North Atlantic Oscillation surface air temperature wave train
下载PDF
Predicting Winter Surface Air Temperature in Northeast China 被引量:19
13
作者 Fan Ke 《Atmospheric and Oceanic Science Letters》 2009年第1期14-17,共4页
The author investigates the prediction of Northeast China's winter surface air temperature (SAT),and first forecast the year to year increment in the predic-tand and then predict the predictand.Thus,in the first s... The author investigates the prediction of Northeast China's winter surface air temperature (SAT),and first forecast the year to year increment in the predic-tand and then predict the predictand.Thus,in the first step,we determined the predictors for an increment in winter SAT by analyzing the atmospheric variability associated with an increment in winter SAT.Then,multi-linear re-gression was applied to establish a prediction model for an increment in winter SAT in Northeast China.The pre-diction model shows a high correlation coefficient (0.73) between the simulated and observed annual increments in winter SAT in Northeast China throughout the period 1965-2002,with a relative root mean square error of -7.9%.The prediction model makes a reasonable hindcast for 2003-08,with an average relative root mean square error of -7.2%.The prediction model can capture the in-creasing trend of winter SAT in Northeast China from 1965-2008.The results suggest that this approach to forecasting an annual increment in winter SAT in North-east China would be relevant in operational seasonal forecasts. 展开更多
关键词 year to year increment winter surface air temperature Northeast China
下载PDF
Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China 被引量:8
14
作者 KUANG Wenhui 《Chinese Geographical Science》 SCIE CSCD 2020年第1期75-88,共14页
The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are tw... The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements.We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity,as well as to investigate the outdoor thermal comfort.The results showed that the lawn of the park could,on average,reduce the air temperature by(0.80±0.19)℃,and increase the relative humidity by(5.24±2.91)% relative to the values measured at the building roof during daytime.During the nighttime,the lawn of the park reduced the air temperature by(2.64±0.64)℃ and increased the relative humidity by(10.77±5.20)%.The park was cooler and more humid than surrounding building area,especially in night period(more pronounced cooling with 1.84℃).Additionally,the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects.The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels(average reduced human comfort index of 0.92)except during the winter. 展开更多
关键词 air temperature relative humidity outdoor thermal comfort urban park planning
下载PDF
Changes and spatial patterns of the differences between ground and air temperature over the Qinghai-Xizang Plateau 被引量:5
15
作者 ZHANG Wengang LI Shuxun +1 位作者 WU Tonghua PANG Qiangqiang 《Journal of Geographical Sciences》 SCIE CSCD 2007年第1期20-32,共13页
The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial d... The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified. 展开更多
关键词 Qinghai-Xizang Plateau difference between ground and air temperature (Ts-Ta) principal component temperature subarea
下载PDF
Influence of the NAO on Wintertime Surface Air Temperature over East Asia:Multidecadal Variability and Decadal Prediction 被引量:4
16
作者 Jianping LI Tiejun XIE +5 位作者 Xinxin TANG Hao WANG Cheng SUN Juan FENG Fei ZHENG Ruiqiang DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第4期625-642,共18页
In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the wi... In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter. 展开更多
关键词 winter East Asian surface air temperature North Atlantic Oscillation Atlantic Multidecadal Oscillation Africa-Asia multidecadal teleconnection pattern coupled oceanic-atmospheric bridge multidecadal variability
下载PDF
Effects of Photosynthetically Active Radiation and Air Temperature on CO_2 Uptake of Pterocarpus macrocarpus in the Open Field 被引量:4
17
作者 Sureeporn Kerdkankaew Jesada Luangjame Pojanie Khummongkol 《Agricultural Sciences in China》 CAS CSCD 2005年第4期263-272,共10页
Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmenta... Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2oC intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as: (-0.0575Ta2+2.6691Ta-23.264)I A= ——————————————— (-0.00766Ta2+0.40666Ta-3.99924) (-4.8794Ta2+227.13Ta-2456.9)+I 展开更多
关键词 air temperature CO2 uptake rate Empirical model Photosynthetically active radiation
下载PDF
Understanding the Soil Temperature Variability at Different Depths:Effects of Surface Air Temperature,Snow Cover,and the Soil Memory 被引量:2
18
作者 Haoxin ZHANG Naiming YUAN +1 位作者 Zhuguo MA Yu HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期493-503,共11页
The soil temperature(ST)is closely related to the surface air temperature(AT),but their coupling may be affected by other factors.In this study,significant effects of the AT on the underlying ST were found,and the tim... The soil temperature(ST)is closely related to the surface air temperature(AT),but their coupling may be affected by other factors.In this study,significant effects of the AT on the underlying ST were found,and the time taken to propagate downward to 320 cm can be up to 10 months.Besides the AT,the ST is also affected by memory effects-namely,its prior thermal conditions.At deeper depth(i.e.,320 cm),the effects of the AT from a particular season may be exceeded by the soil memory effects from the last season.At shallower layers(i.e.,<80 cm),the effects of the AT may be blocked by the snow cover,resulting in a poorly synchronous correlation between the AT and the ST.In northeastern China,this snow cover blockage mainly occurs in winter and then vanishes in the subsequent spring.Due to the thermal insulation effect of the snow cover,the winter ST at layers above 80 cm in northeastern China were found to continue to increase even during the recent global warming hiatus period.These findings may be instructive for better understanding ST variations,as well as land−atmosphere interactions. 展开更多
关键词 soil temperature surface air temperature soil memory snow cover nonlinear causality analysis
下载PDF
Variation in Summer Surface Air Temperature over Northeast Asia and Its Associated Circulation Anomalies 被引量:6
19
作者 Wei CHEN Xiaowei HONG +6 位作者 Riyu LU Aifen JIN Shizhu JIN Jae-Cheol NAM Jin-Ho SHIN Tae-Young GOO Baek-Jo KIM 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期1-9,共9页
This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA) and its associated circulation anomalies.Two leading modes for the temperature variability over NEA are ob... This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA) and its associated circulation anomalies.Two leading modes for the temperature variability over NEA are obtained by EOF analysis.The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode.This anomaly extends from southeast of Lake Baikal to Japan,with a central area in Northeast China.The second EOF mode is characterized by a seesaw pattern,showing a contrasting distribution between East Asia(specifically including the Changbai Mountains in Northeast China,Korea,and Japan) and north of this region.This mode is named the East Asia(EA) mode.Both modes contribute equivalently to the temperature variability in EA.The two leading modes are associated with different circulation anomalies.A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet.On the other hand,a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet.In addition,the NEA mode tends to be related to the Eurasian teleconnection pattern,while the EA mode is associated with the East Asia-Pacific/PacificJapan pattern. 展开更多
关键词 surface air temperature Northeast Asia East Asia circulation anomaly interannual variability
下载PDF
Simulation of the Effect of an Increase in Methane on Air Temperature 被引量:1
20
作者 毕云 陈月娟 +2 位作者 周任君 易明建 邓淑梅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期129-138,共10页
The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experi ment, with the me... The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experi ment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of so- lar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere. 展开更多
关键词 METHANE air temperature SOCRATES model numerical simulation
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部