In the paper weakness of air leakage system in our company is discussed firstly. Secondly the improved scheme of air leakage system including auto-control is designed. Then, the tooling with role of location and recov...In the paper weakness of air leakage system in our company is discussed firstly. Secondly the improved scheme of air leakage system including auto-control is designed. Then, the tooling with role of location and recovery is developed. At last the application of design optimization is processed. The result reveals that the system of air leakage detection is very valuable and important to manufacture.展开更多
Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different ro...Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.展开更多
The air infiltration rate of buildings strongly influences indoor environment and energy consumption.In this study,several traditional methods for determining the air infiltration rate were compared,and their accuracy...The air infiltration rate of buildings strongly influences indoor environment and energy consumption.In this study,several traditional methods for determining the air infiltration rate were compared,and their accuracy in different scenarios was examined.Additionally,a method combining computational flow dynamics(CFD)with the Swami and Chandra(S-C)model was developed to predict the influence of the surrounding environment on the air infiltration rate.Two buildings in Dalian,China,were selected:one with a simple surrounding environment and the other with a complex surrounding environment;their air infiltration rates were measured.The test results were used to validate the accuracy of the air infiltration rate solution models in different urban environments.For the building with a simple environment,the difference between the simulation and experimental results was 0.86%–22.52%.For the building with a complex environment,this difference ranged from 17.42%to 159.28%.We found that most traditional models provide accurate results for buildings with simple surrounding and that the simulation results widely vary for buildings with complex surrounding.The results of the method of combining CFD with the S-C model were more accurate,and the relative error between the simulation and test results was 10.61%.The results indicate that the environment around the building should be fully considered when calculating the air infiltration rate.The results of this study can guide the application of methods of determining air infiltration rate.展开更多
An efficient method for helicopter rotor fault diagnosis was proposed using diagnostic matrix and its software framework was developed.The diagnostic matrix was extracted by the way of simulating the quantitative mode...An efficient method for helicopter rotor fault diagnosis was proposed using diagnostic matrix and its software framework was developed.The diagnostic matrix was extracted by the way of simulating the quantitative models of damaged and undamaged rotor systems.The conflicts were recognized by the virtual symptom sensor based on the dependencies between symptoms and faults.Diagnostic candidates were generated by the Boolean hitting algorithm.The proposed method provides multi-fault real-time diagnostic capability and it is suitable for the synthetic health monitoring of complex systems.展开更多
Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Comm...Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.展开更多
The incursion of Unmanned Aerial Vehicles(UAVs)into airports often occurs due to the popularity of drones,which may lead to a threat to aircraft flight safety.Therefore,estimating the dynamic impact load caused by dro...The incursion of Unmanned Aerial Vehicles(UAVs)into airports often occurs due to the popularity of drones,which may lead to a threat to aircraft flight safety.Therefore,estimating the dynamic impact load caused by drone strikes is essential.This paper proposes a test method with high precision and low cost involving launching of a UAV to impact a flat plate specimen by using an air gun.The test results of UAVs impacting flat plates at different impact velocities,such as the UAV dam-age deformation captured by a high-speed camera and strain vs time dynamic response curves of plates,were obtained and analysed.At the same time,a corresponding numerical simulation was car-ried out by using the explicit finite element software LS-DYNA.The predicted damage to the UAV and strain on the flat plate during the strike process were compared with the test results.The overall trend of the simulation results is in good agreement with the test results,at least for the first three mil-liseconds of the event.This shows that the numerical simulation model established in this paper is rea-sonable.The UAV numerical method established in the present paper can be used to carry out numerical simulations and evaluations of the collision safety of UAVs against large aircraft and high-value ground targets.The results show that the local deformation of the impacted target is uneven due to the distribution of concentrated mass components such as motors,battery,and camera.As the impact velocity of the UAV increases,all parts of the UAV are seriously damaged and basically in a fragmented state,and the battery is greatly deformed.The interaction between the UAV and the flat plate specimen is approximately 2.7 ms,and the UAV numerical simulation model established in this paper can well simulate the real UAV impact process.展开更多
文摘In the paper weakness of air leakage system in our company is discussed firstly. Secondly the improved scheme of air leakage system including auto-control is designed. Then, the tooling with role of location and recovery is developed. At last the application of design optimization is processed. The result reveals that the system of air leakage detection is very valuable and important to manufacture.
基金Project(2010EME006) supported by Open Fund of the Key Laboratory of Environmental Medicine Engineering of Ministry of Education of China Project(51008063) supported by the National Natural Science Foundation of China+1 种基金 Project(3203000601) supported by the Postdoctoral Key Research Program from Southeast University, China Project(2011BAJ03B05) supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.
基金the National Natural Science Foundation of China(51838007)the Tsinghua-Toyota Joint Research Institute Inter-disciplinary Program.
文摘The air infiltration rate of buildings strongly influences indoor environment and energy consumption.In this study,several traditional methods for determining the air infiltration rate were compared,and their accuracy in different scenarios was examined.Additionally,a method combining computational flow dynamics(CFD)with the Swami and Chandra(S-C)model was developed to predict the influence of the surrounding environment on the air infiltration rate.Two buildings in Dalian,China,were selected:one with a simple surrounding environment and the other with a complex surrounding environment;their air infiltration rates were measured.The test results were used to validate the accuracy of the air infiltration rate solution models in different urban environments.For the building with a simple environment,the difference between the simulation and experimental results was 0.86%–22.52%.For the building with a complex environment,this difference ranged from 17.42%to 159.28%.We found that most traditional models provide accurate results for buildings with simple surrounding and that the simulation results widely vary for buildings with complex surrounding.The results of the method of combining CFD with the S-C model were more accurate,and the relative error between the simulation and test results was 10.61%.The results indicate that the environment around the building should be fully considered when calculating the air infiltration rate.The results of this study can guide the application of methods of determining air infiltration rate.
文摘An efficient method for helicopter rotor fault diagnosis was proposed using diagnostic matrix and its software framework was developed.The diagnostic matrix was extracted by the way of simulating the quantitative models of damaged and undamaged rotor systems.The conflicts were recognized by the virtual symptom sensor based on the dependencies between symptoms and faults.Diagnostic candidates were generated by the Boolean hitting algorithm.The proposed method provides multi-fault real-time diagnostic capability and it is suitable for the synthetic health monitoring of complex systems.
基金provided by the U.S. Environmental Protection Agency (Subcontract Number OR13810-001.04 A10-0223-S001-A04)partly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (No. 2011A060901011)+1 种基金the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201308)the project of Atmospheric Haze Collaborative Control System Design (No. XDB05030400) from Chinese Academy of Sciences
文摘Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.
基金supported by the Civil Aviation Security Capacity Building Fund and the Civil Aircraft 13th Five Year Pre-research Project(No.MJ-2018-F-18).
文摘The incursion of Unmanned Aerial Vehicles(UAVs)into airports often occurs due to the popularity of drones,which may lead to a threat to aircraft flight safety.Therefore,estimating the dynamic impact load caused by drone strikes is essential.This paper proposes a test method with high precision and low cost involving launching of a UAV to impact a flat plate specimen by using an air gun.The test results of UAVs impacting flat plates at different impact velocities,such as the UAV dam-age deformation captured by a high-speed camera and strain vs time dynamic response curves of plates,were obtained and analysed.At the same time,a corresponding numerical simulation was car-ried out by using the explicit finite element software LS-DYNA.The predicted damage to the UAV and strain on the flat plate during the strike process were compared with the test results.The overall trend of the simulation results is in good agreement with the test results,at least for the first three mil-liseconds of the event.This shows that the numerical simulation model established in this paper is rea-sonable.The UAV numerical method established in the present paper can be used to carry out numerical simulations and evaluations of the collision safety of UAVs against large aircraft and high-value ground targets.The results show that the local deformation of the impacted target is uneven due to the distribution of concentrated mass components such as motors,battery,and camera.As the impact velocity of the UAV increases,all parts of the UAV are seriously damaged and basically in a fragmented state,and the battery is greatly deformed.The interaction between the UAV and the flat plate specimen is approximately 2.7 ms,and the UAV numerical simulation model established in this paper can well simulate the real UAV impact process.