In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get the...In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.展开更多
Recycling the condensate water of the air conditioner could be explored as an alternative water source to con-tribute to building the green campus.This paper explored the condensate water production through actual mea...Recycling the condensate water of the air conditioner could be explored as an alternative water source to con-tribute to building the green campus.This paper explored the condensate water production through actual mea-surement based on a split air handling unit(SAHU)in a university building.Then,the statistical analysis was used to analyze the recycling feasibility and the impact factors of the condensate water production in 31 Chinese provincial capital cities to obtain the recycling potential map of the condensate water generated from a SAHU.Results showed that:(1)In the measurement,the amount of condensate water produced by a single split air conditioner was 1.6 kg from 12:40 to 13:40.Therefore,the daily output of condensate water of the air condi-tioner with the university operation schedule could reach 52.99 kg during the main air-conditioning season.(2)Among the 31 provincial capital cities in China,the largest condensate water outputs could be found in the Hot Summer and Warm Winter zone and the Hot Summer and Cold Winter zone,with an average monthly output of 1600 kg and 1100 kg,respectively.(3)Regression analysis showed that the dry-bulb temperature and dew point temperature of outdoor air had the highest positive and significant influence on condensate water production.The objective of this study is to provide theoretical guidance for the design and energy conservation evaluation of the feasibility of SAHU condensate water recycling in universities.展开更多
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.
文摘In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.
基金funded by Sichuan Agriculture University,and is supported in part by the scholarship from China Scholarship Council(CSC)under the Grant CSC 202006915024.
文摘Recycling the condensate water of the air conditioner could be explored as an alternative water source to con-tribute to building the green campus.This paper explored the condensate water production through actual mea-surement based on a split air handling unit(SAHU)in a university building.Then,the statistical analysis was used to analyze the recycling feasibility and the impact factors of the condensate water production in 31 Chinese provincial capital cities to obtain the recycling potential map of the condensate water generated from a SAHU.Results showed that:(1)In the measurement,the amount of condensate water produced by a single split air conditioner was 1.6 kg from 12:40 to 13:40.Therefore,the daily output of condensate water of the air condi-tioner with the university operation schedule could reach 52.99 kg during the main air-conditioning season.(2)Among the 31 provincial capital cities in China,the largest condensate water outputs could be found in the Hot Summer and Warm Winter zone and the Hot Summer and Cold Winter zone,with an average monthly output of 1600 kg and 1100 kg,respectively.(3)Regression analysis showed that the dry-bulb temperature and dew point temperature of outdoor air had the highest positive and significant influence on condensate water production.The objective of this study is to provide theoretical guidance for the design and energy conservation evaluation of the feasibility of SAHU condensate water recycling in universities.