期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A study on dynamical features of air-sea coupling waves in the tropics 被引量:2
1
作者 Yang Xiuqun and Huang Shisong Department of Atmospheric Sciences, Nanjing University, Nanjing 210008, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第3期379-393,共15页
The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves i... The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves in the o-cean and in the atmosphere. It is pointed out that there exist a stable and an unstable air-sea interaction modes in the tropical coupled system , respectively. The propagation of the unstable mode relies greatly on the zonal space scale, i. e. only for wave length ranging from 5 000 km to 10 000 km can the disturbance unstably move slowly eastward. The waves that slowly propagate unstably eastward agree well with the observational facts. Finally,it is also proposed that the interaction between Kelvin wave in one medium and Rossby wave in another medium is a necessary condition for the occurrence of destabilization of the coupled air-sea system in the tropics. 展开更多
关键词 air-sea interaction coupling waves features
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
2
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
Simulating Tropical Instability Waves in the Equatorial Eastern Pacific with a Coupled General Circulation Model
3
作者 陈鲜艳 Masahide KIMOTO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期1015-1026,共12页
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1... Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator. 展开更多
关键词 tropical instability waves equatorial eastern Pacific coupled general circulation model heatflux air-sea interaction
下载PDF
STUDY OF AIR-SEA INTERACTION UNDER TYPHOON AND ITS APPLICATION IN STI
4
作者 YONGPING LI YUNXIA ZHENG +1 位作者 RUNLING YU ZIQIANG DUAN 《Tropical Cyclone Research and Review》 2018年第4期212-216,共5页
To improve the forecast of typhoon intensity and meet the requirements of operational services on marine meteorology in Shanghai Meteorological Service of CMA, a few of important scientific research projects from nati... To improve the forecast of typhoon intensity and meet the requirements of operational services on marine meteorology in Shanghai Meteorological Service of CMA, a few of important scientific research projects from national, Shanghai municipal government and CMA were undertaken by Shanghai Typhoon Institute in recent 10 years. Some field experiments for typhoon were carried out. The observational researches on physical process of air-sea interaction reveal some new facts about the turbulence energy transport in the atmospheric and ocean boundary layer under typhoon. Especially there is more understanding for multi-scale response mechanism of ocean and feedback effect of each other. The simulation and prediction of typhoon intensity in the coupled ocean-atmosphere model are improved due to better expression of drag coefficient on sea surface and the sea spray effect on momentum and heat transport. Furthermore, the operational wave models were established for global and northwest Pacific respectively. In particular, the sea wave and storm surge numerical prediction systems with very high resolution including complex physical processes, such as interaction of wave and current, developed over China coastal sea. Based on the numerical model outputs some useful risk indexes for ship voyage were formed and put into use in Shanghai Marine and Meteorological Center, such as wave steepness index, ratio index of swell and synchronism oscillation index et al. The numerical marine products are widely used in daily operational work and professional services recently. 展开更多
关键词 UPPER ocean air-sea interaction TYPHOON intensity coupled model wave and STORM SURGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部