The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such t...The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.展开更多
In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster ...In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.展开更多
The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single ...The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation (G423BQ0110)
文摘The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.
基金supported by the following funds:Defense Industrial Technology Development Program Grant:G20210513Shaanxi Provincal Department of Science and Technology Grant:2021KW-07Shaanxi Provincal Department of Science and Technology Grant:2022 QFY01-14.
文摘In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.
基金supported in parts by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant 61425012the National Science and Technology Major Projects for the New Generation of Broadband Wireless Communication Network under Grant 2017ZX03001014
文摘The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods.