Airborne networks(ANs) are special types of ad hoc networks that can be used to enhance situational awareness, flight coordination and flight efficiency in civil and military aviation.Compared to ground networks, AN...Airborne networks(ANs) are special types of ad hoc networks that can be used to enhance situational awareness, flight coordination and flight efficiency in civil and military aviation.Compared to ground networks, ANs have some unique attributes including high node mobility, frequent topology changes, mechanical and aerodynamic constrains, strict safety requirements and harsh communication environment.Thus, the performance of conventional transmission control protocol(TCP) will be dramatically degraded in ANs.Aircraft commonly have two or more heterogeneous network interfaces which offer an opportunity to form multiple communication paths between any two nodes in ANs.To satisfy the communication requirements in ANs, we propose aeronautical multipath transport protocol(Aero MTP) for ANs, which effectively utilizes the available bandwidth and diversity provided by heterogeneous wireless paths.Aero MTP uses fountain codes as forward error correction(FEC) codes to recover from data loss and deploys a TCP-friendly rate-based congestion control mechanism for each path.Moreover, we design a packet allocation algorithm based on optimization to minimize the delivery time of blocks.The performance of Aero MTP is evaluated through OMNe T++ simulations under a variety of test scenarios.Simulations demonstrate that Aero MTP is of great potential to be applied to ANs.展开更多
With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental ...With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.展开更多
The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(...The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.展开更多
In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster ...In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.展开更多
文摘Airborne networks(ANs) are special types of ad hoc networks that can be used to enhance situational awareness, flight coordination and flight efficiency in civil and military aviation.Compared to ground networks, ANs have some unique attributes including high node mobility, frequent topology changes, mechanical and aerodynamic constrains, strict safety requirements and harsh communication environment.Thus, the performance of conventional transmission control protocol(TCP) will be dramatically degraded in ANs.Aircraft commonly have two or more heterogeneous network interfaces which offer an opportunity to form multiple communication paths between any two nodes in ANs.To satisfy the communication requirements in ANs, we propose aeronautical multipath transport protocol(Aero MTP) for ANs, which effectively utilizes the available bandwidth and diversity provided by heterogeneous wireless paths.Aero MTP uses fountain codes as forward error correction(FEC) codes to recover from data loss and deploys a TCP-friendly rate-based congestion control mechanism for each path.Moreover, we design a packet allocation algorithm based on optimization to minimize the delivery time of blocks.The performance of Aero MTP is evaluated through OMNe T++ simulations under a variety of test scenarios.Simulations demonstrate that Aero MTP is of great potential to be applied to ANs.
基金supported by the Fundamental Research Funds for the Central Universities of CAUC(3122022076)National Natural Science Foundation of China(NSFC)(U2133203).
文摘With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.
基金supported by the National Natural Science Foundation of China(61701521)the Shaanxi Provincial Natural Science Foundation(2018JQ6074)。
文摘The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.
基金supported by the following funds:Defense Industrial Technology Development Program Grant:G20210513Shaanxi Provincal Department of Science and Technology Grant:2021KW-07Shaanxi Provincal Department of Science and Technology Grant:2022 QFY01-14.
文摘In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.