Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be d...Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.展开更多
A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the s...A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.展开更多
文摘Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.
文摘A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.