Environmental issues associated with the aviation industry are getting more attention as air traffic increases.Stringent standards are imposed for fuel consumption and pollution emissions for next-generation aircraft....Environmental issues associated with the aviation industry are getting more attention as air traffic increases.Stringent standards are imposed for fuel consumption and pollution emissions for next-generation aircraft.Superconducting electrical propulsion aircraft(SEPA)have been seen as an efficient way to achieve this goal.High-temperature superconducting(HTS)devices are extensively used in the power system to supply enormous energy.Power is distributed to the different loads via a DC distribution network.However,it will generate an inrush current over ten times higher than the rated current in short-circuit state,which is very harmful to the system.Therefore,it is essential to adopt an appropriate protection scheme.This paper discusses one protection scheme that combines DC vacuum circuit breakers(DC VCB)and resistive superconducting current limiters(RSFCL)for superconducting aircraft applications.Considering problems of cost and loss,the auxiliary capacitor is pre-charged by system voltage,and mechanical elements extinguish the arc.Furthermore,combined with RSFCL,the interrupting environment is fully improved.RSFCL limits fault current,and then the VCB breaks this limited current based on creating an artificial current zero(ACZ).The prospective rated power is 8MW,rated voltage and current are 4 kV and 1 kA,respectively.In this paper,we discuss and simulate switching devices that protect SEPA.The interrupting performance of the circuit breaker is analysed in the DC short-circuit fault that occurs on the transmission line.Finally,the residual energy consumption of different situations is calculated.A comparison is made between using RSFCL with metal oxide varistor(MOV)and just using MOV.The scheme with RSFCL shows a significant advantage in energy consumption.展开更多
Medium voltage DC(MVDC)system is considered as a promising technology to improve the efficiency and power density of electric aircraft propulsion(EAP)drives.To adapt to the MVDC voltage level and achieve high drive pe...Medium voltage DC(MVDC)system is considered as a promising technology to improve the efficiency and power density of electric aircraft propulsion(EAP)drives.To adapt to the MVDC voltage level and achieve high drive performance,a five-level active neutral point clamped(5L-ANPC)inverter consisting of three-level ANPC and flying capacitor circuits is investigated,which possesses higher voltage capability,lower output harmonics,as well as mitigated dv/dt and common-mode voltage.To fulfill the requirements of high-speed operation and pursue further enhanced efficiency and power density of the inverter for the next-generation EAP drives,Silicon Carbide(SiC)semiconductor devices are considered for implementing the 5L-ANPC inverter.However,the large commutation loops associated with certain switching states of the inverter lessen the benefits of configuring all the switches as SiC devices.As a result,a hybrid Si/SiC 5L-ANPC inverter is developed with a synchronous optimal pulse(SOP)width modulation strategy for controlling the switches in cell 2 and finite-control-set model predictive controller(FCS-MPC)for those in cell 3 of the inverter.Consequently,in the proposed topology,the SiC devices are merely used for the high-frequency switches in cell 3 and the rest of the low-frequency switches are configured with Si IGBTs.This Si/SiC hybrid ANPC inverter concurrently provides high efficiency and low implementation cost at high-speed operation mode.Simulation and experimental results are provided to verify the effectiveness of the proposed hybrid inverter.展开更多
基金supported by the 2022 Open funding of the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22211)the National Natural Science Foundation of China,“Research Fund for International Young Scientist(RFIS-1)”,Project:52150410419the 2021 Jiangsu“Shuang-Chuang Doctor(Mass Innovation and Entrepreneurship)Talent Program”,Fund:JSSCBS20211187.
文摘Environmental issues associated with the aviation industry are getting more attention as air traffic increases.Stringent standards are imposed for fuel consumption and pollution emissions for next-generation aircraft.Superconducting electrical propulsion aircraft(SEPA)have been seen as an efficient way to achieve this goal.High-temperature superconducting(HTS)devices are extensively used in the power system to supply enormous energy.Power is distributed to the different loads via a DC distribution network.However,it will generate an inrush current over ten times higher than the rated current in short-circuit state,which is very harmful to the system.Therefore,it is essential to adopt an appropriate protection scheme.This paper discusses one protection scheme that combines DC vacuum circuit breakers(DC VCB)and resistive superconducting current limiters(RSFCL)for superconducting aircraft applications.Considering problems of cost and loss,the auxiliary capacitor is pre-charged by system voltage,and mechanical elements extinguish the arc.Furthermore,combined with RSFCL,the interrupting environment is fully improved.RSFCL limits fault current,and then the VCB breaks this limited current based on creating an artificial current zero(ACZ).The prospective rated power is 8MW,rated voltage and current are 4 kV and 1 kA,respectively.In this paper,we discuss and simulate switching devices that protect SEPA.The interrupting performance of the circuit breaker is analysed in the DC short-circuit fault that occurs on the transmission line.Finally,the residual energy consumption of different situations is calculated.A comparison is made between using RSFCL with metal oxide varistor(MOV)and just using MOV.The scheme with RSFCL shows a significant advantage in energy consumption.
文摘Medium voltage DC(MVDC)system is considered as a promising technology to improve the efficiency and power density of electric aircraft propulsion(EAP)drives.To adapt to the MVDC voltage level and achieve high drive performance,a five-level active neutral point clamped(5L-ANPC)inverter consisting of three-level ANPC and flying capacitor circuits is investigated,which possesses higher voltage capability,lower output harmonics,as well as mitigated dv/dt and common-mode voltage.To fulfill the requirements of high-speed operation and pursue further enhanced efficiency and power density of the inverter for the next-generation EAP drives,Silicon Carbide(SiC)semiconductor devices are considered for implementing the 5L-ANPC inverter.However,the large commutation loops associated with certain switching states of the inverter lessen the benefits of configuring all the switches as SiC devices.As a result,a hybrid Si/SiC 5L-ANPC inverter is developed with a synchronous optimal pulse(SOP)width modulation strategy for controlling the switches in cell 2 and finite-control-set model predictive controller(FCS-MPC)for those in cell 3 of the inverter.Consequently,in the proposed topology,the SiC devices are merely used for the high-frequency switches in cell 3 and the rest of the low-frequency switches are configured with Si IGBTs.This Si/SiC hybrid ANPC inverter concurrently provides high efficiency and low implementation cost at high-speed operation mode.Simulation and experimental results are provided to verify the effectiveness of the proposed hybrid inverter.