The objective of this study is to improve the methods of determining unimpeded(nominal) taxiing time,which is the reference time used for estimating taxiing delay,a widely accepted performance indicator of airport s...The objective of this study is to improve the methods of determining unimpeded(nominal) taxiing time,which is the reference time used for estimating taxiing delay,a widely accepted performance indicator of airport surface movement.After reviewing existing methods used widely by different air navigation service providers(ANSP),new methods relying on computer software and statistical tools,and econometrics regression models are proposed.Regression models are highly recommended because they require less detailed data and can serve the needs of general performance analysis of airport surface operations.The proposed econometrics model outperforms existing ones by introducing more explanatory variables,especially taking aircraft passing and over-passing into the considering of queue length calculation and including runway configuration,ground delay program,and weather factors.The length of the aircraft queue in the taxiway system and the interaction between queues are major contributors to long taxi-out times.The proposed method provides a consistent and more accurate method of calculating taxiing delay and it can be used for ATM-related performance analysis and international comparison.展开更多
In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical j...In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.展开更多
Launching efficiency is an important index to measure the fighting capacity of an aircraft carrier. The study on path planning for taxi of carrier aircraft is of great significance for enhancing the launching efficien...Launching efficiency is an important index to measure the fighting capacity of an aircraft carrier. The study on path planning for taxi of carrier aircraft is of great significance for enhancing the launching efficiency. Considering the launching efficiency and the safety in operation of carrier aircraft launching and taking into account the carrier aircraft maneuver performance, deck environment and feature of mission, we proposed a conceptual model which contains the key elements of path planning for taxi of carrier aircraft. Subsequently, the objective function for the path planning problem and its mathematical model containing various constraints were established. With the A * search algorithm, a dynamic weight heuristic function was designed. According to the characteristic of path planning model for taxi of carrier aircraft, a simple and effective detection method was introduced. Finally, a feasible path for taxi of carrier aircraft, which meets the constraints, was presented. Taking the Nimitz-class aircraft carrier as an example, the paths for taxi of carrier aircraft launching from elevators to catapults were planned. Simulation results demonstrated the rationality of the model and the effectiveness of the algorithm.展开更多
基金supported by FAA ATO-G under contract DTFAWA-09-P-00245
文摘The objective of this study is to improve the methods of determining unimpeded(nominal) taxiing time,which is the reference time used for estimating taxiing delay,a widely accepted performance indicator of airport surface movement.After reviewing existing methods used widely by different air navigation service providers(ANSP),new methods relying on computer software and statistical tools,and econometrics regression models are proposed.Regression models are highly recommended because they require less detailed data and can serve the needs of general performance analysis of airport surface operations.The proposed econometrics model outperforms existing ones by introducing more explanatory variables,especially taking aircraft passing and over-passing into the considering of queue length calculation and including runway configuration,ground delay program,and weather factors.The length of the aircraft queue in the taxiway system and the interaction between queues are major contributors to long taxi-out times.The proposed method provides a consistent and more accurate method of calculating taxiing delay and it can be used for ATM-related performance analysis and international comparison.
基金Supported by the Basic Scientific Research Projects of the Central University of China(ZXH2010D010)the National Natural Science Foundation of China(60979021/F01)~~
文摘In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.
文摘Launching efficiency is an important index to measure the fighting capacity of an aircraft carrier. The study on path planning for taxi of carrier aircraft is of great significance for enhancing the launching efficiency. Considering the launching efficiency and the safety in operation of carrier aircraft launching and taking into account the carrier aircraft maneuver performance, deck environment and feature of mission, we proposed a conceptual model which contains the key elements of path planning for taxi of carrier aircraft. Subsequently, the objective function for the path planning problem and its mathematical model containing various constraints were established. With the A * search algorithm, a dynamic weight heuristic function was designed. According to the characteristic of path planning model for taxi of carrier aircraft, a simple and effective detection method was introduced. Finally, a feasible path for taxi of carrier aircraft, which meets the constraints, was presented. Taking the Nimitz-class aircraft carrier as an example, the paths for taxi of carrier aircraft launching from elevators to catapults were planned. Simulation results demonstrated the rationality of the model and the effectiveness of the algorithm.