With worldwide increases in energy consumption, and the need to increase reliance on renewable energy, we must examine ecological footprints of each energy source, as well as its carbon emissions. Renewable energy sou...With worldwide increases in energy consumption, and the need to increase reliance on renewable energy, we must examine ecological footprints of each energy source, as well as its carbon emissions. Renewable energy sources (wind, solar, hydro, geothermal) are given as the best examples of “green” energy sources with low carbon emissions. We provide a conceptual model for examining the ecological footprint of energy sources, and suggest that each resource needs continued monitoring to protect the environment, and ultimately human health. The effects and consequences of ecological footprint need to be considered in terms of four-compartments: underground (here defined as geoshed), surface, airshed, and atmosphere. We propose a set of measurement endpoints (metrics may vary), in addition to CO2 footprint, that are essential to evaluate the ecological and human health consequences of different energy types. These include traditional media monitoring (air, water, soil), as well as ecological footprints. Monitoring human perceptions of energy sources is also important for energy policy, which evolves with changes in population density, technologies, and economic consequences. While some assessment endpoints are specific to some energy sectors, others can provide crosscutting information allowing the public, communities and governments to make decisions about energy policy and sustainability.展开更多
文摘With worldwide increases in energy consumption, and the need to increase reliance on renewable energy, we must examine ecological footprints of each energy source, as well as its carbon emissions. Renewable energy sources (wind, solar, hydro, geothermal) are given as the best examples of “green” energy sources with low carbon emissions. We provide a conceptual model for examining the ecological footprint of energy sources, and suggest that each resource needs continued monitoring to protect the environment, and ultimately human health. The effects and consequences of ecological footprint need to be considered in terms of four-compartments: underground (here defined as geoshed), surface, airshed, and atmosphere. We propose a set of measurement endpoints (metrics may vary), in addition to CO2 footprint, that are essential to evaluate the ecological and human health consequences of different energy types. These include traditional media monitoring (air, water, soil), as well as ecological footprints. Monitoring human perceptions of energy sources is also important for energy policy, which evolves with changes in population density, technologies, and economic consequences. While some assessment endpoints are specific to some energy sectors, others can provide crosscutting information allowing the public, communities and governments to make decisions about energy policy and sustainability.