By utilizing the current finite element program ANSYS, two types of finite element models (FEM), the beam model (BM) and shell model (SM), are established for the nonlinear stability analysis of a practical rigid fram...By utilizing the current finite element program ANSYS, two types of finite element models (FEM), the beam model (BM) and shell model (SM), are established for the nonlinear stability analysis of a practical rigid frame bridge—Longtanhe Great Bridge. In these analyses, geometrical and material nonlinearities are simultaneously taken into account. For geometrical nonlinearity, updated Lagrangian formulations are adopted to derive the tangent stiffness matrix. In order to simulate the nonlinear behavior of the plastic hinge of the piers, the multi lines spring element COMBIN39 is used in the SM while the bilinear rotational spring element COMBIN40 is employed in the BM. Numerical calculations show that satisfying results can be obtained in the stability analysis of the bridge when the double coupling nonlinearity effects are considered. In addition, the conclusion is significant for practical engineering.展开更多
Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit...Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.展开更多
In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested a...In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested and calculated modal results, the assembled frames' finite element analysis (FEA) models with sufficient precision are built up. Random response analysis in frequency domain is carried out with these FEA models, RMS values of yon Mises and main principle stresses of these two frames are obtained. It shows that the analysis resuits of the distributing tendency and concrete value ranges are coincident very well with test results. And from the results, it could be concluded that frames of scheme A endures relative better loading conditions and should be adopted as the final scheme.展开更多
The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specifica...The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specification and Goodman sketch for welding materials. In addition, the modal analysis of the frame is made, and the vibrational modal of frame in given frequency domain is predetermined to evaluate the dynamical behavior of the frame in order to meet the dynamical design requirements. The results show that the key points of the calculated frame of the equivalent stress are less than allowable stress, and thus it could provide a theoretical foundation for the optimized design of frame structure and safety of industrial production.展开更多
Research on the problem of buckling and post buckling for structures is one of noticed directions in the field of engineering mechanics at present. Whether from the aspect of theory or f...Research on the problem of buckling and post buckling for structures is one of noticed directions in the field of engineering mechanics at present. Whether from the aspect of theory or from the aspect of numerical method, it is necessary to have a deep research on the problem. In this paper, a new geometrical nonlinear element and numerical implementation were presented. By some examples, the problem of buckling and post bukling for planar frames subjected to given loads was discussed in detail.展开更多
The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineeri...The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.展开更多
This paper investigates the behavior of steel frames under progressive collapse using the finite element method. Non-linear finite element models have been developed and verified against existing data reported in the ...This paper investigates the behavior of steel frames under progressive collapse using the finite element method. Non-linear finite element models have been developed and verified against existing data reported in the literature as well as against tests conducted by the authors. The nonlinear material properties of steel and nonlinear geometry were considered in the finite element models. The validated models were used to perform extensive parametric studies investigating different parameters affecting the behavior of steel frames under progressive collapse. The investigated parameters are comprised of different geometries, different number of stories and different dynamic conditions. The force redistribution and failure modes were evaluated from the finite element analyses, with detailed discussions presented.展开更多
Increasing the trains’ speed has always been one of the goals of any railway industry and train manufacturers. Also, the influence of the train speed on bogie’s dynamics has an immense importance. Therefore, it is i...Increasing the trains’ speed has always been one of the goals of any railway industry and train manufacturers. Also, the influence of the train speed on bogie’s dynamics has an immense importance. Therefore, it is important to analyze the effect of train speed on the stress distribution in different parts of train structure. In this study the result of the increasing speed on the applied stresses of a biaxial bogie frame has been examined. For this purpose, a biaxial bogie frame has been modeled using finite element analysis. Static and dynamic forces applied on the bogie with biaxial frame have been obtained for different speeds and rail roughness. The Von Mises stresses are adopted as equivalent stresses in the strength calculation. The results show that maximum stress always has been induced in the bogie bowl also the increase in bogie’s speed has remarkable effect on the increment of applied stresses in the bogie frame.展开更多
The strength and stiffness contribution of infill masonry is generally ignored in the design, due to the uncertainty in the strength properties of masonry, separation of infill from frame, low tensile strength, brittl...The strength and stiffness contribution of infill masonry is generally ignored in the design, due to the uncertainty in the strength properties of masonry, separation of infill from frame, low tensile strength, brittle characteristics of masonry walls, less out of plane strength and stiffness, etc.. They are considered as nonstructural elements which is reasonable for the frames under gravity loads but it is not true for the frames under seismic loads. Contained masonry as infill in RC (reinforced concrete) frames provides better contact at the interface and a higher out of plane strength and stiffness. Considering the seismic action on the frames which are likely to be subjected to in-plane as well as out of plane shaking, a research work has been carried out by the authors to investigate the seismic performance of RC frames with and without contained masonry infill panels using FE (finite element) computer program (ANSYS-Ver. l 1) and experimentally using the tri-axial shake table to evaluate the methods proposed in IS-1893-2002 to calculate the fundamental natural frequency. The RC frames were designed and detailed as per IS (Indian Standard) specifications such as IS 456-2000, IS 1893-2002 and IS 13920-1993. Based on the experimental and analytical investigations, the contained masonry infill panels significantly affect the seismic load resisting characteristics of the RC frames. The IS 1893-2002 formulation does not predict the values and hence the recommendation needs to be validated with experimental results.展开更多
模态分析是水电机组故障诊断的重要方法,但其传统方法缺少对接触部分非线性接触的模拟手段,直接影响模态分析的准确性,也无法对链接部位的失效过程及趋势进行分析。该文基于用户自定义单元子程序接口(user-defined element subroutine i...模态分析是水电机组故障诊断的重要方法,但其传统方法缺少对接触部分非线性接触的模拟手段,直接影响模态分析的准确性,也无法对链接部位的失效过程及趋势进行分析。该文基于用户自定义单元子程序接口(user-defined element subroutine interface,UEL),建立了结合部三维非线性专用分析单元模型。推导所提模型有限元格式的基本方程,获得表征材料非线性特性的本构关系;给出螺栓连接的固定结合部的静态分析,以及立式水轮发电机导轴承支架的模态分析算例;给出导轴承支架的支臂末端螺栓连接变刚度计算的工程应用实例。实验与仿真对比结果表明了建立的UEL三维非线性接触分析专用单元模型的正确性;连接失效分析表明了随着导轴承支架接触刚度的下降,会在整机模态频率计算中引入新的频率段这一结果的重要性。展开更多
文摘By utilizing the current finite element program ANSYS, two types of finite element models (FEM), the beam model (BM) and shell model (SM), are established for the nonlinear stability analysis of a practical rigid frame bridge—Longtanhe Great Bridge. In these analyses, geometrical and material nonlinearities are simultaneously taken into account. For geometrical nonlinearity, updated Lagrangian formulations are adopted to derive the tangent stiffness matrix. In order to simulate the nonlinear behavior of the plastic hinge of the piers, the multi lines spring element COMBIN39 is used in the SM while the bilinear rotational spring element COMBIN40 is employed in the BM. Numerical calculations show that satisfying results can be obtained in the stability analysis of the bridge when the double coupling nonlinearity effects are considered. In addition, the conclusion is significant for practical engineering.
文摘Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.
文摘In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested and calculated modal results, the assembled frames' finite element analysis (FEA) models with sufficient precision are built up. Random response analysis in frequency domain is carried out with these FEA models, RMS values of yon Mises and main principle stresses of these two frames are obtained. It shows that the analysis resuits of the distributing tendency and concrete value ranges are coincident very well with test results. And from the results, it could be concluded that frames of scheme A endures relative better loading conditions and should be adopted as the final scheme.
文摘The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specification and Goodman sketch for welding materials. In addition, the modal analysis of the frame is made, and the vibrational modal of frame in given frequency domain is predetermined to evaluate the dynamical behavior of the frame in order to meet the dynamical design requirements. The results show that the key points of the calculated frame of the equivalent stress are less than allowable stress, and thus it could provide a theoretical foundation for the optimized design of frame structure and safety of industrial production.
文摘Research on the problem of buckling and post buckling for structures is one of noticed directions in the field of engineering mechanics at present. Whether from the aspect of theory or from the aspect of numerical method, it is necessary to have a deep research on the problem. In this paper, a new geometrical nonlinear element and numerical implementation were presented. By some examples, the problem of buckling and post bukling for planar frames subjected to given loads was discussed in detail.
基金Projects(51378077,51478047,51778066)supported by the National Natural Science Foundation of ChinaProject(D20151304)supported by Science and Technology Research Project of Education Department of Hubei Province,ChinaProject(2017CFA070)supported by Hubei Provincial Natural Science Foundation,China
文摘The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.
文摘This paper investigates the behavior of steel frames under progressive collapse using the finite element method. Non-linear finite element models have been developed and verified against existing data reported in the literature as well as against tests conducted by the authors. The nonlinear material properties of steel and nonlinear geometry were considered in the finite element models. The validated models were used to perform extensive parametric studies investigating different parameters affecting the behavior of steel frames under progressive collapse. The investigated parameters are comprised of different geometries, different number of stories and different dynamic conditions. The force redistribution and failure modes were evaluated from the finite element analyses, with detailed discussions presented.
文摘Increasing the trains’ speed has always been one of the goals of any railway industry and train manufacturers. Also, the influence of the train speed on bogie’s dynamics has an immense importance. Therefore, it is important to analyze the effect of train speed on the stress distribution in different parts of train structure. In this study the result of the increasing speed on the applied stresses of a biaxial bogie frame has been examined. For this purpose, a biaxial bogie frame has been modeled using finite element analysis. Static and dynamic forces applied on the bogie with biaxial frame have been obtained for different speeds and rail roughness. The Von Mises stresses are adopted as equivalent stresses in the strength calculation. The results show that maximum stress always has been induced in the bogie bowl also the increase in bogie’s speed has remarkable effect on the increment of applied stresses in the bogie frame.
文摘The strength and stiffness contribution of infill masonry is generally ignored in the design, due to the uncertainty in the strength properties of masonry, separation of infill from frame, low tensile strength, brittle characteristics of masonry walls, less out of plane strength and stiffness, etc.. They are considered as nonstructural elements which is reasonable for the frames under gravity loads but it is not true for the frames under seismic loads. Contained masonry as infill in RC (reinforced concrete) frames provides better contact at the interface and a higher out of plane strength and stiffness. Considering the seismic action on the frames which are likely to be subjected to in-plane as well as out of plane shaking, a research work has been carried out by the authors to investigate the seismic performance of RC frames with and without contained masonry infill panels using FE (finite element) computer program (ANSYS-Ver. l 1) and experimentally using the tri-axial shake table to evaluate the methods proposed in IS-1893-2002 to calculate the fundamental natural frequency. The RC frames were designed and detailed as per IS (Indian Standard) specifications such as IS 456-2000, IS 1893-2002 and IS 13920-1993. Based on the experimental and analytical investigations, the contained masonry infill panels significantly affect the seismic load resisting characteristics of the RC frames. The IS 1893-2002 formulation does not predict the values and hence the recommendation needs to be validated with experimental results.
文摘模态分析是水电机组故障诊断的重要方法,但其传统方法缺少对接触部分非线性接触的模拟手段,直接影响模态分析的准确性,也无法对链接部位的失效过程及趋势进行分析。该文基于用户自定义单元子程序接口(user-defined element subroutine interface,UEL),建立了结合部三维非线性专用分析单元模型。推导所提模型有限元格式的基本方程,获得表征材料非线性特性的本构关系;给出螺栓连接的固定结合部的静态分析,以及立式水轮发电机导轴承支架的模态分析算例;给出导轴承支架的支臂末端螺栓连接变刚度计算的工程应用实例。实验与仿真对比结果表明了建立的UEL三维非线性接触分析专用单元模型的正确性;连接失效分析表明了随着导轴承支架接触刚度的下降,会在整机模态频率计算中引入新的频率段这一结果的重要性。