Propagation dynamics of a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media.The self-healing and collapse of the beam crucially depend ...Propagation dynamics of a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media.The self-healing and collapse of the beam crucially depend on the distribution factor b and the topological charge m.With the aid of nonlocality,a stable Airy Gaussian beam and an Airy Gaussian vortex beam with larger amplitude can be obtained,which always collapse in local nonlinear media.When the distribution factor b is large enough,the Airy Gaussian vortex beam will transfer into quasivortex solitons in nonlocal nonlinear media.展开更多
Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is ...Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.展开更多
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtai...The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.展开更多
In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how...In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.展开更多
基金supported by the National Natural Science Foundation of China(No.61975109)the Science and Technology Commission of Shanghai Municipal(No.19ZR1417900)。
文摘Propagation dynamics of a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media.The self-healing and collapse of the beam crucially depend on the distribution factor b and the topological charge m.With the aid of nonlocality,a stable Airy Gaussian beam and an Airy Gaussian vortex beam with larger amplitude can be obtained,which always collapse in local nonlinear media.When the distribution factor b is large enough,the Airy Gaussian vortex beam will transfer into quasivortex solitons in nonlocal nonlinear media.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation+6 种基金China(Grant No.SYBZZXM201227)the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of ChinaChinese Academy of Sciences
文摘Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108,11374107,10904041,and 11547212)the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province,China+2 种基金the CAS Key Laboratory of Geospace Environment,University of Science and Technology of Chinathe National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.2015093)the Science and Technology Projects of Guangdong Province,China(Grant No.2013B031800011)
文摘The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)
文摘In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.