Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is ...Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.展开更多
Using the split-step Fourier transform method, we numerically investigate the generation of breathing solitons in the propagation and interactions of Airy–Gaussian(AiG) beams in a cubic–quintic nonlinear medium in...Using the split-step Fourier transform method, we numerically investigate the generation of breathing solitons in the propagation and interactions of Airy–Gaussian(AiG) beams in a cubic–quintic nonlinear medium in one transverse dimension. We show that the propagation of single AiG beams can generate stable breathing solitons that do not accelerate within a certain initial power range. The propagation direction of these breathing solitons can be controlled by introducing a launch angle to the incident AiG beams. When two AiG beams accelerated in opposite directions interact with each other,different breathing solitons and soliton pairs are observed by adjusting the phase shift, the beam interval, the amplitudes,and the light field distribution of the initial AiG beams.展开更多
Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different a...Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.展开更多
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtai...The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.展开更多
In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how...In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.展开更多
Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansi...Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD optical system are derived here as particular cases of the main finding. Some numerical simulations are performed in the paper.展开更多
Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
Based on the angular spectrum decomposition and partial-wave series expansion methods, we investigate the radiation force functions of two Airy-Gaussian (AiG) beams on a cylindrical particle and the motion trajector...Based on the angular spectrum decomposition and partial-wave series expansion methods, we investigate the radiation force functions of two Airy-Gaussian (AiG) beams on a cylindrical particle and the motion trajectory of lhe particle. The simulations show that the particle can be pulled or propelled into either the positive or negative transverse direction by turning the phase difference between the two AiG beams appropriately; and the larger the beam widths of the two AiG beams are, the bigger the radiation force can be obtained to control the particle. In addition, the direction of the accelerated particle can be controlled while the dimensionless frequency bandwidth changes. The results indicate that the phase plays an important role in controlling the direction of the particle, which may provide a theoretical basis for the design of acoustical tweezers and the development of drug delivery.展开更多
The realization of quantum storage of spatial light field is of great significance to the construction of high-dimensional quantum repeater.In this paper,we experimentally realize the storage and retrieval of circular...The realization of quantum storage of spatial light field is of great significance to the construction of high-dimensional quantum repeater.In this paper,we experimentally realize the storage and retrieval of circular Airy beams(CABs)by using theΛ-type three-level energy system based on the electromagnetically induced transparency in a hot rubidium atomic vapor cell.The weak probe beam field is modulated with phase distribution of CABs by a spatial light modulator.We store the probe circular Airy beam(CAB)into the rubidium atomic vapor cell and retrieve it after the demanded delay.We quantitatively analyze the storage results and give corresponding theoretical explanations.Moreover,we investigate the autofocusing and self-healing effect of the retrieved CAB,which indicates that the properties and beam shape of CAB maintain well after storage.Our work will have potential applications in the storage of high-dimensional quantum information,and is also useful for improving the channel capacities of quantum internet.展开更多
Dynamic control of Airy beam has been attracting scientists’attention due to its potential applications in imaging,optical manipulation and laser manufacturing.However,traditional way of dynamic tuning of free space ...Dynamic control of Airy beam has been attracting scientists’attention due to its potential applications in imaging,optical manipulation and laser manufacturing.However,traditional way of dynamic tuning of free space Airy beam usually requires bulky optics and will inevitably limit its practical applications.To solve this issue,a recent work proposes to use a compact meta-device which consists of two cascaded dielectric metasurfaces working in the visible regime.展开更多
We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtain...We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.展开更多
Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the ...Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties.展开更多
Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X...Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.展开更多
To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy ac...To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.展开更多
The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ...The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.展开更多
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct...Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation+6 种基金China(Grant No.SYBZZXM201227)the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of ChinaChinese Academy of Sciences
文摘Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602028)the Science and Technology Development Project of Jilin Province,China(Grant No.20160520114JH)+1 种基金the Youth Science Fund of Changchun University of Science and Technology,China(Grant No.XQNJJ-2017-04)the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16400)
文摘Using the split-step Fourier transform method, we numerically investigate the generation of breathing solitons in the propagation and interactions of Airy–Gaussian(AiG) beams in a cubic–quintic nonlinear medium in one transverse dimension. We show that the propagation of single AiG beams can generate stable breathing solitons that do not accelerate within a certain initial power range. The propagation direction of these breathing solitons can be controlled by introducing a launch angle to the incident AiG beams. When two AiG beams accelerated in opposite directions interact with each other,different breathing solitons and soliton pairs are observed by adjusting the phase shift, the beam interval, the amplitudes,and the light field distribution of the initial AiG beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+1 种基金the Foundation of Cultivating Outstanding Young Scholars("Thousand,Hundred,Ten"Program)of Guangdong Province,ChinaCAS Key Laboratory of Geospace Environment,University of Science and Technology of China
文摘Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108,11374107,10904041,and 11547212)the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province,China+2 种基金the CAS Key Laboratory of Geospace Environment,University of Science and Technology of Chinathe National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.2015093)the Science and Technology Projects of Guangdong Province,China(Grant No.2013B031800011)
文摘The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)
文摘In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.
文摘Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD optical system are derived here as particular cases of the main finding. Some numerical simulations are performed in the paper.
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
基金Project supported by the National Key R&D Program,China(Grant No.2016YFF0203000)the National Natural Science Foundation of China(Grant Nos.11774167 and 61571222)+2 种基金Fundamental Research Funds for the Central Universities,China(Grant No.020414380001)State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201609)AQSIQ Technology R&D Program,China(Grant No.2017QK125)
文摘Based on the angular spectrum decomposition and partial-wave series expansion methods, we investigate the radiation force functions of two Airy-Gaussian (AiG) beams on a cylindrical particle and the motion trajectory of lhe particle. The simulations show that the particle can be pulled or propelled into either the positive or negative transverse direction by turning the phase difference between the two AiG beams appropriately; and the larger the beam widths of the two AiG beams are, the bigger the radiation force can be obtained to control the particle. In addition, the direction of the accelerated particle can be controlled while the dimensionless frequency bandwidth changes. The results indicate that the phase plays an important role in controlling the direction of the particle, which may provide a theoretical basis for the design of acoustical tweezers and the development of drug delivery.
基金Project supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘The realization of quantum storage of spatial light field is of great significance to the construction of high-dimensional quantum repeater.In this paper,we experimentally realize the storage and retrieval of circular Airy beams(CABs)by using theΛ-type three-level energy system based on the electromagnetically induced transparency in a hot rubidium atomic vapor cell.The weak probe beam field is modulated with phase distribution of CABs by a spatial light modulator.We store the probe circular Airy beam(CAB)into the rubidium atomic vapor cell and retrieve it after the demanded delay.We quantitatively analyze the storage results and give corresponding theoretical explanations.Moreover,we investigate the autofocusing and self-healing effect of the retrieved CAB,which indicates that the properties and beam shape of CAB maintain well after storage.Our work will have potential applications in the storage of high-dimensional quantum information,and is also useful for improving the channel capacities of quantum internet.
文摘Dynamic control of Airy beam has been attracting scientists’attention due to its potential applications in imaging,optical manipulation and laser manufacturing.However,traditional way of dynamic tuning of free space Airy beam usually requires bulky optics and will inevitably limit its practical applications.To solve this issue,a recent work proposes to use a compact meta-device which consists of two cascaded dielectric metasurfaces working in the visible regime.
基金the National Natural Science Foundation of China(Grant Nos.12164032,11964026,and 12364010)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant Nos.2019MS01010,2022MS01014,and 2020BS01009)+1 种基金the Doctor Research Start-up Fund of Inner Mongolia Minzu University(Grant Nos.BS625 and BS439)the Basic Research Funds for Universities Directly under the Inner Mongolia Autonomous Region,China(Grant No.GXKY23Z029).
文摘We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.
基金the National Key R&D Program of China(No.2023YFA1606503)the National Natural Science Foundation of China(Nos.12035011,11975167,11947211,11905103,11881240623,and 11961141003).
文摘Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties.
基金supported by the National Natural Science Foundation of China(12371150,11971432)the Natural Science Foundation of Zhejiang Province(LY21G010003)+2 种基金the Management Project of"Digital+"Discipline Construction of Zhejiang Gongshang University(SZJ2022A012,SZJ2022B017)the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)the Scientific Research Projects of Universities in Anhui Province(2022AH050955)。
文摘Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.
基金This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.89233218CNA000001The Authors gratefully acknowledge the support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing Program.LA-UR-22-33159.
文摘To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.
基金supported by the National Natural Science Foundation of China(Grant No.42174157)the CAGS Research Fund(Grant No.JKY202216)the Chinese Geological Survey Project(Grant Nos.DD20230008,DD20233002).
文摘The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62375140 and 62001249)the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No.M36055)。
文摘Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.