针对机械臂系统外部干扰的轨迹跟踪问题,提出一种无需重置初始条件的加速迭代学习控制方法。利用指数变增益加速学习控制律,结合迭代学习控制算法,无需重置机械臂每次运行时初始条件,历经多次迭代后,实现对期望轨迹的实时跟踪。并在λ...针对机械臂系统外部干扰的轨迹跟踪问题,提出一种无需重置初始条件的加速迭代学习控制方法。利用指数变增益加速学习控制律,结合迭代学习控制算法,无需重置机械臂每次运行时初始条件,历经多次迭代后,实现对期望轨迹的实时跟踪。并在λ范数意义下,证明了无需重置条件的比例微分(proportion differentiation,PD)型加速迭代学习控制算法的收敛性。基于二自由度(two degrees of freedom,2-DOFs)仿真实验结果验证了该方法的可行性和有效性。同时在Quanser机电一体化运动控制实验平台上完成了实验验证,表明该算法的实用性。展开更多
文摘针对机械臂系统外部干扰的轨迹跟踪问题,提出一种无需重置初始条件的加速迭代学习控制方法。利用指数变增益加速学习控制律,结合迭代学习控制算法,无需重置机械臂每次运行时初始条件,历经多次迭代后,实现对期望轨迹的实时跟踪。并在λ范数意义下,证明了无需重置条件的比例微分(proportion differentiation,PD)型加速迭代学习控制算法的收敛性。基于二自由度(two degrees of freedom,2-DOFs)仿真实验结果验证了该方法的可行性和有效性。同时在Quanser机电一体化运动控制实验平台上完成了实验验证,表明该算法的实用性。