This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st...This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .展开更多
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an...This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po...The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.展开更多
A novel method for obtaining the approximate symmetry of a partial differential equation with a small parameter is introduced. By expanding the independent variable and the dependent variable in the small parameter se...A novel method for obtaining the approximate symmetry of a partial differential equation with a small parameter is introduced. By expanding the independent variable and the dependent variable in the small parameter series, we obtain more affluent approximate symmetries. The method is applied to two perturbed nonlinear partial differential equations and new approximate solutions are derived.展开更多
Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the ap...Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the approximate output of the resonant gyroscope.The method of small parameter perturbation is used to analyze the approximate solution of the Mathieu equation.The theoretical analysis and the numerical simulations show that the approximate solution of the Mathieu equation is close to the dynamic output characteristics of the resonant gyroscope.The experimental analysis shows that the theoretical curve and the experimental data processing results coincide perfectly,which means that the approximate solution of the Mathieu equation can present the dynamic output characteristic of the resonant gyroscope.The theoretical approach and the experimental results of the Mathieu equation approximate solution are obtained,which provides a reference for the robust design of the resonant gyroscope.展开更多
The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via th...The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.展开更多
In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that ...In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.展开更多
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux ...Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic ...A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admi...This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.展开更多
The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parame...The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.展开更多
In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The pr...In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.展开更多
Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symm...Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.展开更多
This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on th...This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids.展开更多
This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the...This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.展开更多
This paper presents the Approximate Incrtial Manifold ∑ and its successive approximate incrtial manifold ∑i and ∑ij . We give the estimates of thickness of neighborhood of ∑, ∑j, Ejt respectively in which the eve...This paper presents the Approximate Incrtial Manifold ∑ and its successive approximate incrtial manifold ∑i and ∑ij . We give the estimates of thickness of neighborhood of ∑, ∑j, Ejt respectively in which the every solution of Navier-Stokcs equation enters.Another part of this paper presents construction method for A.I.M. by multilevel finite clement method and give error estimates of the approximate solution of incrtial form.展开更多
A uniformly valid approximate solution of a kind of nonlinear wave equations is studied. The research results indicate that the solution of this kind of equations can be represented by Airy function approximately. The...A uniformly valid approximate solution of a kind of nonlinear wave equations is studied. The research results indicate that the solution of this kind of equations can be represented by Airy function approximately. The usually used W. K. B. approximation is the first order approximation of the present result in the region far away from the turning point of refractivity. At the turning point of refractivity, the present result is still valid.展开更多
文摘This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .
基金supported by the Science and Technology Development Fund of Macao SAR(FDCT0128/2022/A,0020/2023/RIB1,0111/2023/AFJ,005/2022/ALC)the Shandong Natural Science Foundation of China(ZR2020MA004)+2 种基金the National Natural Science Foundation of China(12071272)the MYRG 2018-00168-FSTZhejiang Provincial Natural Science Foundation of China(LQ23A010014).
文摘This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
基金supported by the National Board for Higher Mathematics,Mumbai,India under Grant No.2/48(5)/2013/NBHM(R.P.)/RD-II/688 dt 16.01.2014
文摘The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.
文摘A novel method for obtaining the approximate symmetry of a partial differential equation with a small parameter is introduced. By expanding the independent variable and the dependent variable in the small parameter series, we obtain more affluent approximate symmetries. The method is applied to two perturbed nonlinear partial differential equations and new approximate solutions are derived.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60927005)the Innovation Foundation of BUAA for Ph. D. Graduates,Chinathe Fundamental Research Funds for the Central Universities,China (Grant No. YWF-10-01-A17)
文摘Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the approximate output of the resonant gyroscope.The method of small parameter perturbation is used to analyze the approximate solution of the Mathieu equation.The theoretical analysis and the numerical simulations show that the approximate solution of the Mathieu equation is close to the dynamic output characteristics of the resonant gyroscope.The experimental analysis shows that the theoretical curve and the experimental data processing results coincide perfectly,which means that the approximate solution of the Mathieu equation can present the dynamic output characteristic of the resonant gyroscope.The theoretical approach and the experimental results of the Mathieu equation approximate solution are obtained,which provides a reference for the robust design of the resonant gyroscope.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007, the China Postdoctoral Science Foundation, and the Natural Science Foundation of Shanxi Province under Grant No. 2005A13
文摘The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072242)the Key Scientific Studies Program of Hebei Province Higher Education Institute,China(Grant No.ZD2018301)Cangzhou National Science Foundation,China(Grant No.177000001)
文摘In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.
基金supported by the Research Council of Norway through theprojects Nonlinear Problems in Mathematical Analysis Waves In Fluids and Solids+2 种基金 Outstanding Young Inves-tigators Award (KHK), the Russian Foundation for Basic Research (grant No. 09-01-00490-a) DFGproject No. 436 RUS 113/895/0-1 (EYuP)
文摘Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371098 and 10447007the Natural Science Foundation of Shanxi Province of China under Grant No.2005A13
文摘This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)National Basic Research Program of China (Grant No. 2007CB814800)+1 种基金Ningbo Natural Science Foundation (Grant No. 2008A610017)K.C. Wong Magna Fund in Ningbo University
文摘The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 20080404MS0104)the Young Scientists Fund of Inner Mongolia University of China (Grant No. ND0811)
文摘In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 10735030, 10475055, and 90503006; the Natural Science Research Plan in Shaanxi Province under Grant No. SJ08A09; the Research Fund of Postdoctoral of China under Grant No. 20070410727;the Research Found of Shaanxi Normal University
文摘Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.
文摘This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids.
文摘This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.
文摘This paper presents the Approximate Incrtial Manifold ∑ and its successive approximate incrtial manifold ∑i and ∑ij . We give the estimates of thickness of neighborhood of ∑, ∑j, Ejt respectively in which the every solution of Navier-Stokcs equation enters.Another part of this paper presents construction method for A.I.M. by multilevel finite clement method and give error estimates of the approximate solution of incrtial form.
文摘A uniformly valid approximate solution of a kind of nonlinear wave equations is studied. The research results indicate that the solution of this kind of equations can be represented by Airy function approximately. The usually used W. K. B. approximation is the first order approximation of the present result in the region far away from the turning point of refractivity. At the turning point of refractivity, the present result is still valid.