Akkermansia muciniphila is one of the commensals residing within the mammalian gut and co-evolving with the host.Numerous studies have demonstrated the benefits of A.muciniphila in ameliorating metabolic disorders,whi...Akkermansia muciniphila is one of the commensals residing within the mammalian gut and co-evolving with the host.Numerous studies have demonstrated the benefits of A.muciniphila in ameliorating metabolic disorders,while little is known about the antimicrobial potential of A.muciniphila against pathogens.Here,we examined the antimicrobial and anti-virulence properties of cell free supernatant(CFS)of A.muciniphila against Salmonella Typhimurium.CFS retarded bacterial growth and inhibited the motility of S.Typhimurium SL1344 and S.Typhimurium 14028.CFS dose-dependently reduced cell hydrophobicity and auto-aggregation of both strains.Also,CFS from A.muciniphila significantly attenuated biofilm formation.Compared with untreated bacteria,CFS-treated bacteria significantly decreased adhesion and invasion to Caco-2 cells,and reduced intracellular survival in macrophages.CFS maintained antimicrobial properties after treatment with high temperatures and various proteases,while it lost its antimicrobial activity after pH neutralization.Gas chromatography-mass spectrometry(GC-MS)confirmed that A.muciniphila produced a certain amount of acetate and propionate,and ultra-high-performance liquid chromatography-mass spectrometry(UHPLCMS)identified other organic acids and metabolites in CFS.In summary,CFS from A.muciniphila exhibited anti-biofilm and anti-virulence properties against Salmonella and could be potentially utilized in the food industry for controlling Salmonella contamination and reducing infection.展开更多
Akkermansia muciniphila play an important in ameliorating obesity but is not allowed for direct consumption in most countries.To date,microbiota-directed foods selectively promote the targeted human gut microbes,provi...Akkermansia muciniphila play an important in ameliorating obesity but is not allowed for direct consumption in most countries.To date,microbiota-directed foods selectively promote the targeted human gut microbes,providing a strategy for A.muciniphila enhancement.Multiple studies have indicated the potential regulation of the polyphenol on A.muciniphila.Therefore,a polyphenol screening based on A.muciniphila upregulation was performed in mice.Chlorogenic acid(CGA)exhibited a greater response to A.muciniphila upregulation.Furthermore,we found that CGA did not directly promote A.muciniphila growth or mucin secretion.Microbiome and metabolomics revealed that the increased abundance of A.muciniphila resulted from the inhibition of CGA on Desulfovibrio and Alistipes and the influence of docosahexaenoic acid,β-hydroxybutyrate,and N-acetyl-lactosamine.Finally,to confirm the regulation of CGA on A.muciniphila under disease conditions,high-fat diet-fed mice were established.The results showed CGA promoted A.muciniphila growth,and we expectedly found that CGA suppressed the augment in body weight of mice,significantly attenuated adipose tissue abnormality,provided liver protection and improved gut barrier integrity.These results suggest that CGA inhibits the development of obesity.Overall,our results indicate that microbiota-directed food is a promising approach for the treatment of obesity.展开更多
Akkermansia muciniphila, one of the most promising next-generation probiotics, was reported to exhibit beneficial modulatory effects on the gut barrier. However, the strain-specific and underlying regulatory mechanism...Akkermansia muciniphila, one of the most promising next-generation probiotics, was reported to exhibit beneficial modulatory effects on the gut barrier. However, the strain-specific and underlying regulatory mechanisms of this species on gut barrier function were not well studied. Therefore, this study evaluated the protective effect of A. muciniphila strains on the intestinal barrier and investigated the mode of action and material basis of this modulatory effect. We first confirmed the strain-specific effects of A. muciniphila on intestinal barrier regulation and found that this phenomenon may be explained by the different abilities of strains to affect tight junction protein expression in enterocytes. Comparative genomic analysis proved that the ability of A. muciniphila to regulate the intestinal barrier was exerted in part by the functional genes(such as COG0438, COG0463, and COG2244)related to the synthesis of cellular surface proteins. The role of these surface proteins in intestinal barrier regulation was further verified by strain-comparative experiments in animal and cell models and surface protein removal trials. This study confirmed the different effects of A. muciniphila strains on gut barrier modulation and provided molecular and genetic targets for the screening of A. muciniphila strains with superior protection against gut barrier dysfunction.展开更多
Akkermansia muciniphila在肠道内的丰度与宿主肥胖症、Ⅱ型糖尿病等一系列代谢性疾病呈显著负相关,为了观测干酪乳杆菌SY13(Lactobacillus casei SY13)及SY13与低聚果糖、SY13与乳果糖对小鼠肠道Akkermansia muciniphila的影响。本研究...Akkermansia muciniphila在肠道内的丰度与宿主肥胖症、Ⅱ型糖尿病等一系列代谢性疾病呈显著负相关,为了观测干酪乳杆菌SY13(Lactobacillus casei SY13)及SY13与低聚果糖、SY13与乳果糖对小鼠肠道Akkermansia muciniphila的影响。本研究以8周龄的青年鼠及9个月大的老年鼠为研究对象,随机分为5组:AP组(8周龄鼠,灌胃1 d,1次/d)、AO组(9个月龄鼠,灌胃1 d,1次/d)、BP组(8周龄鼠,灌胃28 d,1次/d)、BO组(9个月龄鼠,灌胃28 d,1次/d),每组48只,每个实验组又分为对照组(无菌PBS,0.3 m L)、干酪乳杆菌SY13组(SY13:10~9 cfu,0.3 m L)、SY13低聚果糖组(SY13:10~9 cfu;低聚果糖:15 mg,0.3 m L)和SY13乳果糖组(SY13:109cfu;乳果糖:15 mg,0.3 m L),每组12只。实时荧光定量PCR测定小鼠空肠、回肠、盲肠、结肠中Akkermansia muciniphila的丰度,根据CT值间接反应Akkermansia muciniphila的丰度。结果显示,SY13乳果糖组的CT值显著低于其他组(p<0.05),青年鼠的CT值显著低于老年鼠组(p<0.05),长期灌胃与单次灌胃相比,CT值较低(p<0.05)。研究表明,SY13乳果糖组对于提高实验鼠肠道内Akkermansia muciniphila的丰度具有最优的效果,且鼠龄越低,灌胃时间越长,Akkermansia muciniphila的丰度越高,同时,灌胃时间越长,Akkermansia muciniphila的保留时间就越长,这与鼠龄和灌胃项无关。展开更多
The composition of the gut microbiota,including Akkermatisia muciniphila(A.muciniphila),is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease(PD).A.mu...The composition of the gut microbiota,including Akkermatisia muciniphila(A.muciniphila),is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease(PD).A.muciniphila,a mucin-degrading bacterium,is a potential next-generation microbe that has anti-inflammatory properties and is responsible for keeping the body healthy.As the role of A.muciniphila in PD has become increasingly apparent,we discuss the potential link between A.muciniphila and various neurological diseases(including PD)in the current review.展开更多
基金funded by National Key Research and Development Program of China(2022YFD2100104)Science and Technology Research Program of the Liaoning Department of Education(J2020044)+1 种基金Shaanxi Key Research and Development project(2019SF-259)LiaoNing Revitalization Talents Program(XLYC1807220).
文摘Akkermansia muciniphila is one of the commensals residing within the mammalian gut and co-evolving with the host.Numerous studies have demonstrated the benefits of A.muciniphila in ameliorating metabolic disorders,while little is known about the antimicrobial potential of A.muciniphila against pathogens.Here,we examined the antimicrobial and anti-virulence properties of cell free supernatant(CFS)of A.muciniphila against Salmonella Typhimurium.CFS retarded bacterial growth and inhibited the motility of S.Typhimurium SL1344 and S.Typhimurium 14028.CFS dose-dependently reduced cell hydrophobicity and auto-aggregation of both strains.Also,CFS from A.muciniphila significantly attenuated biofilm formation.Compared with untreated bacteria,CFS-treated bacteria significantly decreased adhesion and invasion to Caco-2 cells,and reduced intracellular survival in macrophages.CFS maintained antimicrobial properties after treatment with high temperatures and various proteases,while it lost its antimicrobial activity after pH neutralization.Gas chromatography-mass spectrometry(GC-MS)confirmed that A.muciniphila produced a certain amount of acetate and propionate,and ultra-high-performance liquid chromatography-mass spectrometry(UHPLCMS)identified other organic acids and metabolites in CFS.In summary,CFS from A.muciniphila exhibited anti-biofilm and anti-virulence properties against Salmonella and could be potentially utilized in the food industry for controlling Salmonella contamination and reducing infection.
基金supported by the Natural Science Foundation of Jiangsu Province[BK20200084]the National Natural Science Foundation of China[No.32122067 and 32021005]the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Akkermansia muciniphila play an important in ameliorating obesity but is not allowed for direct consumption in most countries.To date,microbiota-directed foods selectively promote the targeted human gut microbes,providing a strategy for A.muciniphila enhancement.Multiple studies have indicated the potential regulation of the polyphenol on A.muciniphila.Therefore,a polyphenol screening based on A.muciniphila upregulation was performed in mice.Chlorogenic acid(CGA)exhibited a greater response to A.muciniphila upregulation.Furthermore,we found that CGA did not directly promote A.muciniphila growth or mucin secretion.Microbiome and metabolomics revealed that the increased abundance of A.muciniphila resulted from the inhibition of CGA on Desulfovibrio and Alistipes and the influence of docosahexaenoic acid,β-hydroxybutyrate,and N-acetyl-lactosamine.Finally,to confirm the regulation of CGA on A.muciniphila under disease conditions,high-fat diet-fed mice were established.The results showed CGA promoted A.muciniphila growth,and we expectedly found that CGA suppressed the augment in body weight of mice,significantly attenuated adipose tissue abnormality,provided liver protection and improved gut barrier integrity.These results suggest that CGA inhibits the development of obesity.Overall,our results indicate that microbiota-directed food is a promising approach for the treatment of obesity.
基金supported by the Natural Science Foundation of Jiangsu Province (BK20200084)The National Natural Science Foundation of China (32021005 and 31871773)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Akkermansia muciniphila, one of the most promising next-generation probiotics, was reported to exhibit beneficial modulatory effects on the gut barrier. However, the strain-specific and underlying regulatory mechanisms of this species on gut barrier function were not well studied. Therefore, this study evaluated the protective effect of A. muciniphila strains on the intestinal barrier and investigated the mode of action and material basis of this modulatory effect. We first confirmed the strain-specific effects of A. muciniphila on intestinal barrier regulation and found that this phenomenon may be explained by the different abilities of strains to affect tight junction protein expression in enterocytes. Comparative genomic analysis proved that the ability of A. muciniphila to regulate the intestinal barrier was exerted in part by the functional genes(such as COG0438, COG0463, and COG2244)related to the synthesis of cellular surface proteins. The role of these surface proteins in intestinal barrier regulation was further verified by strain-comparative experiments in animal and cell models and surface protein removal trials. This study confirmed the different effects of A. muciniphila strains on gut barrier modulation and provided molecular and genetic targets for the screening of A. muciniphila strains with superior protection against gut barrier dysfunction.
基金supported by grants from Double thousand talents program of Jiangxi province(No.jxsq2019101021)the National Natural Science Foundation of China(No.82060222)+2 种基金the Natural Science Foundation of Jiangxi Province(No.20181BAB205030)the Key R&D Plan of Jiangxi Science and Technology Agency-General Project(No.20192BBG70031)Administration of Traditional Chinese Medicine of Jiangxi Province(No.2021B101).
文摘The composition of the gut microbiota,including Akkermatisia muciniphila(A.muciniphila),is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease(PD).A.muciniphila,a mucin-degrading bacterium,is a potential next-generation microbe that has anti-inflammatory properties and is responsible for keeping the body healthy.As the role of A.muciniphila in PD has become increasingly apparent,we discuss the potential link between A.muciniphila and various neurological diseases(including PD)in the current review.