For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high conce...For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_(x)(OH)_y^(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_(2)(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.展开更多
The application of Co(Ⅲ)/Al2O3 catalyst in Fischer-Tropsch synthesis(FTS)was studied in a wide range of synthesis gas conversions and compared with Fuzzy Simulation results.Present study applies fuzzy model to pr...The application of Co(Ⅲ)/Al2O3 catalyst in Fischer-Tropsch synthesis(FTS)was studied in a wide range of synthesis gas conversions and compared with Fuzzy Simulation results.Present study applies fuzzy model to predicting the product composition of CH4,CO2 and CO in Fischer-Tropsch process for natural gas synthesis,in which the input vector was 4-dimension including four variables(operating pressure, operating temperature,time and CO/H2 ratio)of 70 different experiments and the output product is a composition of CO2,CO and CH4. The Mamdani algorithm has been applied to the training of the fuzzy system and the test set was used to evaluate the performance of the system including R2,ARE,AARE and SD.The results demonstrated that the predicted values from the model were in good consistency with the experimental data.The work indicates how fuzzy inference system(FIS),as a promising predicting technique,would be effectively used in FTS.展开更多
To better understand the amendment effects and mechanisms of aluminum(Al(Ⅲ))phytotoxicity mitigation by differ-ent regional crop straw biochars,wheat seedling root elongation trials were conducted.The contributions o...To better understand the amendment effects and mechanisms of aluminum(Al(Ⅲ))phytotoxicity mitigation by differ-ent regional crop straw biochars,wheat seedling root elongation trials were conducted.The contributions of liming effect,oxygen-containing surface functional group adsorption,and oxyanions precipitation to Al(Ⅲ)phytotoxicity mitigation by Ca(OH)_(2),pristine and ash-free canola straw biochar were evaluated.The results indicated that biochars derived from canola straw collected from four different regions(Yingtan,Xuancheng,Nanjing,and Huaiyin)caused 22-70%wheat seedling root elongation,which might be linked to liming effect.Incorporation of the corresponding ash-free biochars caused 15-30%elongation,which could be attributed to the surface functional group adsorption.About 0-60%of changes could be explained by Al(Ⅲ)precipitation with inorganic oxyanions.These findings provide new insights into the physicochemical properties,potential applications,efficiencies,and underlying mechanisms of crop straw biochar in alleviating Al(Ⅲ)phytotoxicity,which is dependent on the cultivation soil,and indicate similar application of crop straw biochar for acidic soil amelioration,contaminated soil remediation,and arable soil improvement.展开更多
基金financial supports from the National Key Research and Development Program of China(No.2022YFB3504501)the National Natural Science Foundation of China(Nos.52274355,91962211)the Gansu Province Science and Technology Major Special Project,China(No.22ZD6GD061)。
文摘For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_(x)(OH)_y^(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_(2)(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.
文摘The application of Co(Ⅲ)/Al2O3 catalyst in Fischer-Tropsch synthesis(FTS)was studied in a wide range of synthesis gas conversions and compared with Fuzzy Simulation results.Present study applies fuzzy model to predicting the product composition of CH4,CO2 and CO in Fischer-Tropsch process for natural gas synthesis,in which the input vector was 4-dimension including four variables(operating pressure, operating temperature,time and CO/H2 ratio)of 70 different experiments and the output product is a composition of CO2,CO and CH4. The Mamdani algorithm has been applied to the training of the fuzzy system and the test set was used to evaluate the performance of the system including R2,ARE,AARE and SD.The results demonstrated that the predicted values from the model were in good consistency with the experimental data.The work indicates how fuzzy inference system(FIS),as a promising predicting technique,would be effectively used in FTS.
基金National Key R&D Program of China(2019YFC1803403 and 2021YFD1500202)the National Natural Science Foundation of China(41771275).
文摘To better understand the amendment effects and mechanisms of aluminum(Al(Ⅲ))phytotoxicity mitigation by differ-ent regional crop straw biochars,wheat seedling root elongation trials were conducted.The contributions of liming effect,oxygen-containing surface functional group adsorption,and oxyanions precipitation to Al(Ⅲ)phytotoxicity mitigation by Ca(OH)_(2),pristine and ash-free canola straw biochar were evaluated.The results indicated that biochars derived from canola straw collected from four different regions(Yingtan,Xuancheng,Nanjing,and Huaiyin)caused 22-70%wheat seedling root elongation,which might be linked to liming effect.Incorporation of the corresponding ash-free biochars caused 15-30%elongation,which could be attributed to the surface functional group adsorption.About 0-60%of changes could be explained by Al(Ⅲ)precipitation with inorganic oxyanions.These findings provide new insights into the physicochemical properties,potential applications,efficiencies,and underlying mechanisms of crop straw biochar in alleviating Al(Ⅲ)phytotoxicity,which is dependent on the cultivation soil,and indicate similar application of crop straw biochar for acidic soil amelioration,contaminated soil remediation,and arable soil improvement.