为改善Al-Pb合金的表面硬度和耐磨性能,利用强流脉冲电子束(high current pulsed electron beam,HCPEB)对涂敷在纯铝(Al)表面的铅(Pb)层进行辐照合金化处理,制备具有优异性能的Al-Pb合金化层。采用3D激光扫描显微系统(laser scanning mi...为改善Al-Pb合金的表面硬度和耐磨性能,利用强流脉冲电子束(high current pulsed electron beam,HCPEB)对涂敷在纯铝(Al)表面的铅(Pb)层进行辐照合金化处理,制备具有优异性能的Al-Pb合金化层。采用3D激光扫描显微系统(laser scanning microscope,LSM)测量表面粗糙度;利用带能谱仪(energy dispersive spectrometer,EDS)的场发射扫描电镜(scanning electron microscopy,SEM)分析辐照合金化前后Al-Pb涂层的微观形貌、结构与元素分布;随后使用X射线衍射仪(X-ray diffraction,XRD)观察合金层的物相组成;利用透射电镜(transmission electron microscope,TEM)精细表征Al-Pb合金层的微观结构,最后测试辐照前后样品表面的显微硬度、平均摩擦因数与磨损率并分析硬度及磨损增强机理,探究和总结材料表面性能强化机制,建立辐照合金层表面-微观组织-表面性能之间的内在联系。结果表明:经过HCPEB辐照处理后,Al基体与Pb涂层呈现良好的冶金结合,并在30次辐照后制备了10.2μm厚的Al-Pb合金层;与纯铝及原始涂层相比,辐照30次后(111)Al晶面衍射峰发生了宽化,同时衍射峰的位置也向低角度发生微小移动,这表明基体表面Al晶粒在HCPEB表面合金化处理后得到了显著的细化且晶胞发生膨胀,晶格常数增大;HCPEB诱发样品表面形成了亚晶、位错、位错胞、少量的Al(Pb)固溶体以及大量纳米级富Pb颗粒。性能测试结果表明,经电子束辐照后Al-Pb涂层表面的硬度和耐磨性显著提高。展开更多
通过机械合金化制备了 Al-15%Pb-4%Si-1%Sn-1.5%Cu(质量分数)纳米晶粉末。采用 X 射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对不同球磨时间的混合粉末的组织结构、晶粒大小、微观形貌以及颗粒中化学成分分布情况进行了研究。结果表...通过机械合金化制备了 Al-15%Pb-4%Si-1%Sn-1.5%Cu(质量分数)纳米晶粉末。采用 X 射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对不同球磨时间的混合粉末的组织结构、晶粒大小、微观形貌以及颗粒中化学成分分布情况进行了研究。结果表明混合粉末经过球磨后形成了纳米晶,其组织非常均匀。球磨对 Pb 的作用效果明显大于对 Al 的作用效果,经过 40 h 球磨后 Pb 粒子达到 40 nm,而 Al 在球磨 60 h 后晶粒为 65 nm;经球磨后,Cu 和 Si 固溶于 Al 的晶格中,而 Sn 则固溶于 Pb 晶格中,并且 Al 和 Pb 发生了互溶,形成了 Pb(Al)超饱和固溶体;在球磨过程中硬度高的脆性粒子 Si 难于完全实现合金化。展开更多
壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)...壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果。结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m^(2)/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高。FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基。TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05)。XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强。三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳pH和温度分别为6.0和60℃,对Pb(Ⅱ)的吸附过程均符合Langmuir吸附等温模型(R^(2)=0.9543~0.9811)和准二级动力学模型(R^(2)=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用。根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量q_(max)为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05)。综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景。展开更多
文摘为改善Al-Pb合金的表面硬度和耐磨性能,利用强流脉冲电子束(high current pulsed electron beam,HCPEB)对涂敷在纯铝(Al)表面的铅(Pb)层进行辐照合金化处理,制备具有优异性能的Al-Pb合金化层。采用3D激光扫描显微系统(laser scanning microscope,LSM)测量表面粗糙度;利用带能谱仪(energy dispersive spectrometer,EDS)的场发射扫描电镜(scanning electron microscopy,SEM)分析辐照合金化前后Al-Pb涂层的微观形貌、结构与元素分布;随后使用X射线衍射仪(X-ray diffraction,XRD)观察合金层的物相组成;利用透射电镜(transmission electron microscope,TEM)精细表征Al-Pb合金层的微观结构,最后测试辐照前后样品表面的显微硬度、平均摩擦因数与磨损率并分析硬度及磨损增强机理,探究和总结材料表面性能强化机制,建立辐照合金层表面-微观组织-表面性能之间的内在联系。结果表明:经过HCPEB辐照处理后,Al基体与Pb涂层呈现良好的冶金结合,并在30次辐照后制备了10.2μm厚的Al-Pb合金层;与纯铝及原始涂层相比,辐照30次后(111)Al晶面衍射峰发生了宽化,同时衍射峰的位置也向低角度发生微小移动,这表明基体表面Al晶粒在HCPEB表面合金化处理后得到了显著的细化且晶胞发生膨胀,晶格常数增大;HCPEB诱发样品表面形成了亚晶、位错、位错胞、少量的Al(Pb)固溶体以及大量纳米级富Pb颗粒。性能测试结果表明,经电子束辐照后Al-Pb涂层表面的硬度和耐磨性显著提高。
文摘通过机械合金化制备了 Al-15%Pb-4%Si-1%Sn-1.5%Cu(质量分数)纳米晶粉末。采用 X 射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对不同球磨时间的混合粉末的组织结构、晶粒大小、微观形貌以及颗粒中化学成分分布情况进行了研究。结果表明混合粉末经过球磨后形成了纳米晶,其组织非常均匀。球磨对 Pb 的作用效果明显大于对 Al 的作用效果,经过 40 h 球磨后 Pb 粒子达到 40 nm,而 Al 在球磨 60 h 后晶粒为 65 nm;经球磨后,Cu 和 Si 固溶于 Al 的晶格中,而 Sn 则固溶于 Pb 晶格中,并且 Al 和 Pb 发生了互溶,形成了 Pb(Al)超饱和固溶体;在球磨过程中硬度高的脆性粒子 Si 难于完全实现合金化。
文摘壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果。结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m^(2)/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高。FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基。TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05)。XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强。三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳pH和温度分别为6.0和60℃,对Pb(Ⅱ)的吸附过程均符合Langmuir吸附等温模型(R^(2)=0.9543~0.9811)和准二级动力学模型(R^(2)=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用。根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量q_(max)为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05)。综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景。