P and RE complex modification of hypereutectic Al-Si alloys was conducted. The influences of P, RE content on the microstructure and mechanical properties of alloys were investigated. The complex modifications of P an...P and RE complex modification of hypereutectic Al-Si alloys was conducted. The influences of P, RE content on the microstructure and mechanical properties of alloys were investigated. The complex modifications of P and RE make the coarse block primary silicon obviously refined and the large needle eutectic silicon modified to the fine fibrous or lamella ones. P mainly refines the primary silicon, but excess P is unfavorable to the refinement of primary silicon. RE can well refine the primary and eutectic silicon, but its modification effect on the eutectic silicon is more obvious. P can repress the modification of RE on the eutectic silicon. The alloys with the additions of 0.08% P and 0.60% RE have the optimal microstructure and the highest mechanical properties. Compared with the unmodified alloy, the primary silicon of alloys can be refined from 66.4 μm to 23.3 μm and the eutectic silicon can be refined from 8.3 μm to 5.2 μm. The tensile strength is improved from 256 MPa to 306 MPa and the elongation is improved from 0.35% to 0.48%.展开更多
An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduc...An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.展开更多
The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-scrip...The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.展开更多
Effect of P-Na united modification on Al-22%Si-1.0%Cu-0.5%Mg-0.5%Mn alloy was studied. The results show that the refining effect of P-Na addition on primary silicon is superior to that of P and the former could modify...Effect of P-Na united modification on Al-22%Si-1.0%Cu-0.5%Mg-0.5%Mn alloy was studied. The results show that the refining effect of P-Na addition on primary silicon is superior to that of P and the former could modify eutectic silicon at the same time. Effects of P-Na modification on crystallization and microstructure of hypereutectic Al-Si alloys were studied with Electron-Scanning Microscope, Electron-Probe and X-ray diffractometer. The modification mechanism represents that on one hand, the primary silicon is refined by AlP as heterogeneous nucleus; on the other hand, when Na is added at the same time, P atoms are difficult to diffuse in the melt, and then enrichs on the growing faces of silicon phase. Moreover, a SiP compound was also discovered in Si crystals, which prevents the growth of silicon phase and refines the primary silicon.展开更多
The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr s...The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr successfully modified the platelet and flake-likeβ-Al-5FeSi phases (β-compound) into the fibrousα-Al-8Fe-2Si (α-compound).The additions of Sr and Sr/Mg were less effective to modify theβ-compound into theα-compound,while the eutectic Si was fully modified into the fibrous morphology.A small secondary dendrite arm spacing (DAS) was found in the Sr-added,Cr-added and Sr/Cr-added alloys,especially in a steel mold.The Sr,Sr/Cr and Sr/Mg combined additions modify the eutectic Si simultaneously.A sludge phase was found in the addition of Cr-added,Sr/Cr-added and Mg-added alloys,especially in the graphite mold casting.The volume fraction ofβ-compounds was decreased by the addition of various modifying elements. The Cr and Sr/Cr combined additions are very effective to modify theβ-compound for the recycled Al-Si-Fe based alloys.展开更多
The modification effect of La addition on the microstructural characteristics of hypereutectic Al 17%Si alloys was studied. Microstructures were examined using conventional optical microscopy and electron probe X ray ...The modification effect of La addition on the microstructural characteristics of hypereutectic Al 17%Si alloys was studied. Microstructures were examined using conventional optical microscopy and electron probe X ray microanalyzer. The morphology of Si crystal was evaluated by quantitative metallographical analysis. The results indicate that simultaneous modification to both primary and eutectic Si crystals is obtained by the addition of pure rare earth metal La in the hypereutectic Al 17%Si alloys while the optimal effect of La is obtained at a rather large scale. La begins to form intermetallic compound when its concentration exceeds approximately 1%, which appears as dark platelets in etched specimens. Electron probe X ray microanalysis experiment shows that La rich platelet could be represented as Al 1Si 2La 2 consisting of LaSi 2 and some unknown ternary Al x Si y La phase.展开更多
The effect of the rare earth cerium (Ce) on the hypereutectic Al-Si alloy under different casting states have been studied by optical microscope and quantitative image analysis. It is found that the size and the qua...The effect of the rare earth cerium (Ce) on the hypereutectic Al-Si alloy under different casting states have been studied by optical microscope and quantitative image analysis. It is found that the size and the quantity of primary silicon in castings decrease with the increase of added Ce in the melt. Meanwhile primary silicon changes from branched shape to fine facetted shape. Although the modification on eutectic silicon in castings also improves with the increase of added Ce in the melt, the effect of modification on eutectic silicon away from primary silicon is more obvious than that on eutectic silicon close to primary silicon. The modification mechanism was analyzed in detail by means of scanning electron microscope equipped with energy dispersive analysis of X-ray and thermodynamics analysis, which included the analysis on the change in standard Gibbs energy of reaction and reaction equilibrium.展开更多
The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope,scanning electron microscope,and energy dispersive...The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope,scanning electron microscope,and energy dispersive spectrum analysis. The results showed that the morphol-ogy of the primary Mg2Si phase particles changed from irregular or crosses to polygonal shape,their sizes decreased from 75 μm to about 25 μm,and the compound of both the oxide and CaCO3 was better than either the single mixed rare earth o...展开更多
Thermodynamic law of interaction between modification element and alloy melt has been analyzed, and the effect of modification element on electrical resistivity of melt has been studied. It was found that, in a certai...Thermodynamic law of interaction between modification element and alloy melt has been analyzed, and the effect of modification element on electrical resistivity of melt has been studied. It was found that, in a certain range of concentration, there exists a ‘node’ where the alloy melt reconstruction will occur. An extreme value appeared in the relationship curve of melt’s resistivity and modification element’s concentration corresponding to the ‘node’, where the solidified structure of the alloy changed remarkably.展开更多
Being used more and more widely in engineering,AlSi alloys comprise about 80%of all kinds of aluminum alloys,which are the most widely utilized nonferrous alloys.Although most Al-Si alloys consist of multiple componen...Being used more and more widely in engineering,AlSi alloys comprise about 80%of all kinds of aluminum alloys,which are the most widely utilized nonferrous alloys.Although most Al-Si alloys consist of multiple components,the eutectics in the structure accounts for 50%-90%of the sum volume of such alloys.Therefore,understanding the modification mechanism and function rules of the AlSi eutectic solidification is the technical key in controlling the structures and properties of such casting alloys.The present paper chiefly reviews recent investigation developments and important conclusions along the lines of the functions of modification elements and their modification mechanism in the eutectic solidification of Al-Si alloys.展开更多
The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is found that excellent modification effect can be obtained by the addition of this new type of Al-P master alloy into ...The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is found that excellent modification effect can be obtained by the addition of this new type of Al-P master alloy into Al-24Si melt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that the TiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. When the content of TiC particles in the Al-24Si melt is 0.03%, the improvement reaches the maximum and keeps steady with increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master alloy and TiC particles, and keeps stable with prolonging holding time.展开更多
The purpose of this paper was to investigate the effects of solution treatment time and Sr-modification on the microstructure and property of the Al-Si piston alloy.It was found that as-cast microstructures of unmodif...The purpose of this paper was to investigate the effects of solution treatment time and Sr-modification on the microstructure and property of the Al-Si piston alloy.It was found that as-cast microstructures of unmodified and Sr-modified Al-Si alloys consisted of a coarse acicular plate of eutectic Si,Cu_3NiAl_6 and Mg_2Si phases in theα-Al matrix but different in size and morphology.Both size and inter-particle spacing of Si particles were significantly changed by increasing the solution treatment time.After a short solution treatment,the coarse acicular plate of the eutectic Si appears to be fragmented.Fully modified microstructure of Sr-modified alloy can reduce the solution treatment time compared to unmodified alloy.The maximum of a peak hardness value is found in the very short solution treatment of both Al-Si piston alloys.Compared to 10 h solution treatment,the solution treatment of 2-4 h is sufficient to achieve appropriate microstructures and hardness. The short solution treatment is very useful to increase the productivity and to reduce the manufacturing cost of the Al-Si piston alloys.展开更多
Effects of high magnetic field on modification of Al-6%Si hypoeutectic alloy, Al-12.6%Si eutectic alloy and Al-18%Si hypereutectic alloy were studied. For the Al-6%Si alloy, it is found that the sample modified by Na-...Effects of high magnetic field on modification of Al-6%Si hypoeutectic alloy, Al-12.6%Si eutectic alloy and Al-18%Si hypereutectic alloy were studied. For the Al-6%Si alloy, it is found that the sample modified by Na-salt does not lose efficacy after remelting under high magnetic field. For the Al-12.6%Si alloy, if the sample modified by Na-salt is kept at the temperature of modification reaction, high magnetic field can postpone the effective time of the modification. For Al-18%Si alloy modified by P-salt, the primary Si in solidified structure concentrates at the edge of the sample and eutectic Si appears in the center of the sample under the condition without high magnetic field, while the primary Si distributes evenly in the sample when the high magnetic field is imposed. It is thought that the high magnetic field restrains the convection of the melt.展开更多
The influence of cooling rate and Fe-containing phases on Sr-modification of Si phases in hypoeutectic Al-Si alloys, a problem with great industrial importance, was investigated. The microstructures of samples were ex...The influence of cooling rate and Fe-containing phases on Sr-modification of Si phases in hypoeutectic Al-Si alloys, a problem with great industrial importance, was investigated. The microstructures of samples were examined using scanning electron microscopy(SEM) with energy-dispersive X-ray spectroscopy(EDX). A new method of electron probe microanalysis(EPMA) map scanning was used to analyze the Sr distribution, which gave quantitative results covering more Si particles. EPMA map scanning, together with SEM with EDX, was also used in analyzing the distribution of Fe phases. Results show that Fe-containing phase was related to the unmodified Si particles in samples with partial modification failure and the plate-like Si phases in samples without modification failure. Such a relationship was further confirmed by the microstructure observation.In conclusion, a partial failure of Sr-modification can be caused by both slow cooling rate and Fe-containing phases.展开更多
Most evaluations of modification level are done according to a specific scale based on an American Foundry Society (AFS) standard wall chart as qualitative analysis in Al-Si casting production currently. This method i...Most evaluations of modification level are done according to a specific scale based on an American Foundry Society (AFS) standard wall chart as qualitative analysis in Al-Si casting production currently. This method is quite dependent on human experience when making comparisons of the microstructure with the standard chart. And the structures depicted in the AFS chart do not always resemble those seen in actual Al-Si castings. Therefore, this qualitative analysis procedure is subjective and can introduce human-caused errors into comparative metallographic analyses. A quantization parameter of the modification level was introduced by setting up the relationship between mean area weighted shape factor of eutectic silicon phase and the modification level using image analysis technology. In order to evaluate the modification level, a new method called "intelligent evaluating of melt quality by pattern recognition of thermal analysis cooling curves" has also been introduced. The results show that silicon modification level can be precisely assessed by comparison of the cooling curve of the melt to be evaluated with the one most similar to it in a database.展开更多
By inserting the single crystal silicon seeds into Sr modified Al-22wt-% Si alloy melts,the fact that nucleation and growth of Si-phase are affected by Sr addition has been confirmed.It is suggested that this effect i...By inserting the single crystal silicon seeds into Sr modified Al-22wt-% Si alloy melts,the fact that nucleation and growth of Si-phase are affected by Sr addition has been confirmed.It is suggested that this effect is caused by the adsorption of Sr on{111}_(si),and the modification of eutectic structure results from the variation of leading phase in the eutectic from Si to α-Al.展开更多
文摘P and RE complex modification of hypereutectic Al-Si alloys was conducted. The influences of P, RE content on the microstructure and mechanical properties of alloys were investigated. The complex modifications of P and RE make the coarse block primary silicon obviously refined and the large needle eutectic silicon modified to the fine fibrous or lamella ones. P mainly refines the primary silicon, but excess P is unfavorable to the refinement of primary silicon. RE can well refine the primary and eutectic silicon, but its modification effect on the eutectic silicon is more obvious. P can repress the modification of RE on the eutectic silicon. The alloys with the additions of 0.08% P and 0.60% RE have the optimal microstructure and the highest mechanical properties. Compared with the unmodified alloy, the primary silicon of alloys can be refined from 66.4 μm to 23.3 μm and the eutectic silicon can be refined from 8.3 μm to 5.2 μm. The tensile strength is improved from 256 MPa to 306 MPa and the elongation is improved from 0.35% to 0.48%.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 50625101)the Key Project of Science and Technology Research of the Ministry of Education of China (No. 106103)
文摘An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.
基金supported by the National Natural Science Funds for Distinguished Young Scholar in China(No.50725413)the Major State Basic Research Development Program of China(973)(No.2007CB613704)+1 种基金the Natural Science Foundation Project of CQ CSTC(No.2007BB4400)Chongqing Science and Technology Commission in China(No.2006AA4012-9-6).
文摘The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.
文摘Effect of P-Na united modification on Al-22%Si-1.0%Cu-0.5%Mg-0.5%Mn alloy was studied. The results show that the refining effect of P-Na addition on primary silicon is superior to that of P and the former could modify eutectic silicon at the same time. Effects of P-Na modification on crystallization and microstructure of hypereutectic Al-Si alloys were studied with Electron-Scanning Microscope, Electron-Probe and X-ray diffractometer. The modification mechanism represents that on one hand, the primary silicon is refined by AlP as heterogeneous nucleus; on the other hand, when Na is added at the same time, P atoms are difficult to diffuse in the melt, and then enrichs on the growing faces of silicon phase. Moreover, a SiP compound was also discovered in Si crystals, which prevents the growth of silicon phase and refines the primary silicon.
文摘The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr successfully modified the platelet and flake-likeβ-Al-5FeSi phases (β-compound) into the fibrousα-Al-8Fe-2Si (α-compound).The additions of Sr and Sr/Mg were less effective to modify theβ-compound into theα-compound,while the eutectic Si was fully modified into the fibrous morphology.A small secondary dendrite arm spacing (DAS) was found in the Sr-added,Cr-added and Sr/Cr-added alloys,especially in a steel mold.The Sr,Sr/Cr and Sr/Mg combined additions modify the eutectic Si simultaneously.A sludge phase was found in the addition of Cr-added,Sr/Cr-added and Mg-added alloys,especially in the graphite mold casting.The volume fraction ofβ-compounds was decreased by the addition of various modifying elements. The Cr and Sr/Cr combined additions are very effective to modify theβ-compound for the recycled Al-Si-Fe based alloys.
文摘The modification effect of La addition on the microstructural characteristics of hypereutectic Al 17%Si alloys was studied. Microstructures were examined using conventional optical microscopy and electron probe X ray microanalyzer. The morphology of Si crystal was evaluated by quantitative metallographical analysis. The results indicate that simultaneous modification to both primary and eutectic Si crystals is obtained by the addition of pure rare earth metal La in the hypereutectic Al 17%Si alloys while the optimal effect of La is obtained at a rather large scale. La begins to form intermetallic compound when its concentration exceeds approximately 1%, which appears as dark platelets in etched specimens. Electron probe X ray microanalysis experiment shows that La rich platelet could be represented as Al 1Si 2La 2 consisting of LaSi 2 and some unknown ternary Al x Si y La phase.
基金The work is financially supported by Shanghai Leading Academic Discipline Project (No. T0101)the Open Funds of Shanghai Key Laboratory of Metal Function Materials Research and Application.
文摘The effect of the rare earth cerium (Ce) on the hypereutectic Al-Si alloy under different casting states have been studied by optical microscope and quantitative image analysis. It is found that the size and the quantity of primary silicon in castings decrease with the increase of added Ce in the melt. Meanwhile primary silicon changes from branched shape to fine facetted shape. Although the modification on eutectic silicon in castings also improves with the increase of added Ce in the melt, the effect of modification on eutectic silicon away from primary silicon is more obvious than that on eutectic silicon close to primary silicon. The modification mechanism was analyzed in detail by means of scanning electron microscope equipped with energy dispersive analysis of X-ray and thermodynamics analysis, which included the analysis on the change in standard Gibbs energy of reaction and reaction equilibrium.
基金the Natural Science Foundation of Jiangxi Province (No. 0650047)the Science and Technology Program of the Education Department of Jiangxi Province,China(No.GJJ08268).
文摘The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope,scanning electron microscope,and energy dispersive spectrum analysis. The results showed that the morphol-ogy of the primary Mg2Si phase particles changed from irregular or crosses to polygonal shape,their sizes decreased from 75 μm to about 25 μm,and the compound of both the oxide and CaCO3 was better than either the single mixed rare earth o...
文摘Thermodynamic law of interaction between modification element and alloy melt has been analyzed, and the effect of modification element on electrical resistivity of melt has been studied. It was found that, in a certain range of concentration, there exists a ‘node’ where the alloy melt reconstruction will occur. An extreme value appeared in the relationship curve of melt’s resistivity and modification element’s concentration corresponding to the ‘node’, where the solidified structure of the alloy changed remarkably.
文摘Being used more and more widely in engineering,AlSi alloys comprise about 80%of all kinds of aluminum alloys,which are the most widely utilized nonferrous alloys.Although most Al-Si alloys consist of multiple components,the eutectics in the structure accounts for 50%-90%of the sum volume of such alloys.Therefore,understanding the modification mechanism and function rules of the AlSi eutectic solidification is the technical key in controlling the structures and properties of such casting alloys.The present paper chiefly reviews recent investigation developments and important conclusions along the lines of the functions of modification elements and their modification mechanism in the eutectic solidification of Al-Si alloys.
文摘The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is found that excellent modification effect can be obtained by the addition of this new type of Al-P master alloy into Al-24Si melt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that the TiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. When the content of TiC particles in the Al-24Si melt is 0.03%, the improvement reaches the maximum and keeps steady with increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master alloy and TiC particles, and keeps stable with prolonging holding time.
文摘The purpose of this paper was to investigate the effects of solution treatment time and Sr-modification on the microstructure and property of the Al-Si piston alloy.It was found that as-cast microstructures of unmodified and Sr-modified Al-Si alloys consisted of a coarse acicular plate of eutectic Si,Cu_3NiAl_6 and Mg_2Si phases in theα-Al matrix but different in size and morphology.Both size and inter-particle spacing of Si particles were significantly changed by increasing the solution treatment time.After a short solution treatment,the coarse acicular plate of the eutectic Si appears to be fragmented.Fully modified microstructure of Sr-modified alloy can reduce the solution treatment time compared to unmodified alloy.The maximum of a peak hardness value is found in the very short solution treatment of both Al-Si piston alloys.Compared to 10 h solution treatment,the solution treatment of 2-4 h is sufficient to achieve appropriate microstructures and hardness. The short solution treatment is very useful to increase the productivity and to reduce the manufacturing cost of the Al-Si piston alloys.
文摘Effects of high magnetic field on modification of Al-6%Si hypoeutectic alloy, Al-12.6%Si eutectic alloy and Al-18%Si hypereutectic alloy were studied. For the Al-6%Si alloy, it is found that the sample modified by Na-salt does not lose efficacy after remelting under high magnetic field. For the Al-12.6%Si alloy, if the sample modified by Na-salt is kept at the temperature of modification reaction, high magnetic field can postpone the effective time of the modification. For Al-18%Si alloy modified by P-salt, the primary Si in solidified structure concentrates at the edge of the sample and eutectic Si appears in the center of the sample under the condition without high magnetic field, while the primary Si distributes evenly in the sample when the high magnetic field is imposed. It is thought that the high magnetic field restrains the convection of the melt.
基金supported by the International Science & Technology Cooperation Program of China(No.2015DFR50470)
文摘The influence of cooling rate and Fe-containing phases on Sr-modification of Si phases in hypoeutectic Al-Si alloys, a problem with great industrial importance, was investigated. The microstructures of samples were examined using scanning electron microscopy(SEM) with energy-dispersive X-ray spectroscopy(EDX). A new method of electron probe microanalysis(EPMA) map scanning was used to analyze the Sr distribution, which gave quantitative results covering more Si particles. EPMA map scanning, together with SEM with EDX, was also used in analyzing the distribution of Fe phases. Results show that Fe-containing phase was related to the unmodified Si particles in samples with partial modification failure and the plate-like Si phases in samples without modification failure. Such a relationship was further confirmed by the microstructure observation.In conclusion, a partial failure of Sr-modification can be caused by both slow cooling rate and Fe-containing phases.
基金The paper is support by Foundation Key Project of Yunnan:The Study on inoculated theory and reliability of low carbonductile iron, NO. 1999E0004Z
文摘Most evaluations of modification level are done according to a specific scale based on an American Foundry Society (AFS) standard wall chart as qualitative analysis in Al-Si casting production currently. This method is quite dependent on human experience when making comparisons of the microstructure with the standard chart. And the structures depicted in the AFS chart do not always resemble those seen in actual Al-Si castings. Therefore, this qualitative analysis procedure is subjective and can introduce human-caused errors into comparative metallographic analyses. A quantization parameter of the modification level was introduced by setting up the relationship between mean area weighted shape factor of eutectic silicon phase and the modification level using image analysis technology. In order to evaluate the modification level, a new method called "intelligent evaluating of melt quality by pattern recognition of thermal analysis cooling curves" has also been introduced. The results show that silicon modification level can be precisely assessed by comparison of the cooling curve of the melt to be evaluated with the one most similar to it in a database.
文摘By inserting the single crystal silicon seeds into Sr modified Al-22wt-% Si alloy melts,the fact that nucleation and growth of Si-phase are affected by Sr addition has been confirmed.It is suggested that this effect is caused by the adsorption of Sr on{111}_(si),and the modification of eutectic structure results from the variation of leading phase in the eutectic from Si to α-Al.