The icosahedral quasicrvstalline phase (i-phase) with the chemical composition of 82.4at%Al. 8.8at%Fe. 3.6at%V and 5.2at%Si in melt spun Al-Fe-V-Si ribbons was found. It is suggested that the temperature and holding t...The icosahedral quasicrvstalline phase (i-phase) with the chemical composition of 82.4at%Al. 8.8at%Fe. 3.6at%V and 5.2at%Si in melt spun Al-Fe-V-Si ribbons was found. It is suggested that the temperature and holding time of the melt prior to quenching are the important factors in the formation of the i-phase.展开更多
Ribbons of the two-phase titanium alloy were fabricated by single-roller rapid solidification technique,and aged at high temperature. The microstructure of ribbon samples were characterized with X-ray diffractometer(X...Ribbons of the two-phase titanium alloy were fabricated by single-roller rapid solidification technique,and aged at high temperature. The microstructure of ribbon samples were characterized with X-ray diffractometer(XRD) and environmental scanning electron microscope(ESEM). The microstructures of the alloy are composed of α phase and supersaturated β phase,and X-ray diffraction results show that all peaks of the α and β phases shift slightly to smaller angles,which can be explained by the disordering growth pattern caused by the rapid solidification process. After aging at 960 ℃ in vacuum,the ribbon is composed of homogeneous α phase and β phase.展开更多
The mechanisms of multimodal microstructure evolution and the effects of microstructural factors on mechanical properties must be elucidated to design new alloys with superior properties.In this study,high-fracture-to...The mechanisms of multimodal microstructure evolution and the effects of microstructural factors on mechanical properties must be elucidated to design new alloys with superior properties.In this study,high-fracture-toughness and ductile Mg_(96.75)Zn_(0.85)Y_(2.05)Al_(0.35) alloys were developed using rapidly solidified(RS)ribbon-consolidation technique,and the inherited multimodal microstructure evolution during plastic flow consolidation of the RS ribbons was investigated.The use of extrusion for plastic flow consolidation of the heat-treated RS ribbons produced a multimodal microstructure consisting of the worked grains with high Kernel average misorientation(KAM)angles(Group1),the ultrafine dynamically recrystallized(DRXed)grains with intermediate KAM angles(Group 2),and the fine DRXed grains with low KAM angles(Group 3).Groups 1 and 2 contribute to the alloy strengthening,while Group 3 contributes to improving ductility with strainhardening,resulting in enhancement of the fracture toughness.To form the multimodal microstructure,it was necessary to apply plastic flow with equivalent strains of>2.3 to the heat-treated RS ribbons possessing duplex microstructures with different dispersions of the long-period stacking ordered phase.展开更多
Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models...Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 10^5 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 10^7 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural refinement and modification. The size of the primary silicon decreased from approximately 1μm to 30 nm while the formation of iron-containing intermetallic compounds was suppressed. Supersaturation of the aluminum matrix in an amount of-7 at.% Si was noticed from the XRD patterns During the hot consolidation process, coarsening of the primary silicon particles and precipitation of β-Al5FeSi phase were observed. Evaluation of the compressive strength and hardness of the alloy indicated an improvement in mechanical properties due to the microstructural modification.展开更多
Droplets of Co-16%Cu and Co-71.6%Cu peritectic alloys were solidified during container-less processing in a 3-m drop tube. The microstructures of Co-16%Cu alloy droplets were characterized by dendritic or equiaxed α-...Droplets of Co-16%Cu and Co-71.6%Cu peritectic alloys were solidified during container-less processing in a 3-m drop tube. The microstructures of Co-16%Cu alloy droplets were characterized by dendritic or equiaxed α-Co phase with a small amount of Cu-rich solid solution distributed on α-Co phase boundaries. Two thresholds of droplet diameter were observed for Co-16%Cu alloy at which "equiaxed-dendritic-equiaxed" morphological transitions occur to primary α-Co phase. This conspicuous refinement of primary α-Co grains results from the fragmentation of α-Co dendrites caused by re-calescence effect. For Co-71.6% Cu alloy, the primary a-Co phase forms as coarse columnar dendrites in large droplets and equiaxed dendrites in small droplets. Theoretical calculations indicate that Marangoni migration contributes more to the growth of disperse Co-rich spheres by stimulating collision and coalescence than Stokes motion caused by the residual gravity in the falling Co-71.6%Cu alloy droplets.展开更多
The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was foun...The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.展开更多
Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil t...Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.展开更多
The viscose flow and microstructure formation of Fe-Cu peritectic alloy melts are investigated by analyzing the velocity and temperature fields during rapid solidifi-cation,which is verified by rapid quenching experim...The viscose flow and microstructure formation of Fe-Cu peritectic alloy melts are investigated by analyzing the velocity and temperature fields during rapid solidifi-cation,which is verified by rapid quenching experiments.It is found that a large temperature gradient exists along the vertical direction of melt puddle,whereas there is no obvious temperature variation in the tangent direction of roller surface.After being sprayed from a nozzle,the alloy melt changes the magnitude and di-rection of its flow and velocity rapidly at a height of about 180 μm.The horizontal flow velocity increases rapidly,but the vertical flow velocity decreases sharply.A thermal boundary layer with 160-300 μm in height and a momentum boundary layer with 160-240 μm in thickness are formed at the bottom of melt puddle,and the Reynolds number Re is in the range of 870 to 1070 in the boundary layer.With the increase of Re number,the cooling rate increases linearly and the thickness of thermal boundary layer increases monotonically.The thickness of momentum boundary layer decreases slowly at first,then rises slightly and decreases sharply.If Re < 1024,the liquid flow has remarkable effects on the microstructure formation due to dominant momentum transfer.The separated liquid phase is likely to form a fiber-like microstructure.If Re>1024,the heat transfer becomes dominating and the liquid phase flow is suppressed,which results in the formation of fine and uniform equiaxed microstructures.展开更多
The splat foils of Al-Sm alloys with 0.04-0.06mm in thickness were made by hammeranvil technique. The estimated cooling rute was 106K/ order of magnitude. The extended solid solubility of Sm in α-Al reached 0.5at. % ...The splat foils of Al-Sm alloys with 0.04-0.06mm in thickness were made by hammeranvil technique. The estimated cooling rute was 106K/ order of magnitude. The extended solid solubility of Sm in α-Al reached 0.5at. % Sm. The intermediate phase in the rapidlysolidified Al-Sm alloys is Al11Sm3 phase, which is stable only at temperatures above 1339K in equilibrium state and retained to ambient temperature as a metastable phase, whereas the equlibrium intermediate phase, Al3Sm, was restricted to occur.展开更多
The effects of additions of Ti and W on microstructure and mechanical properties of rapidly solidified Al-Fe-V-Si alloys were investigated. Alloy powders were produced by the centrifugal rotary atomization process. Af...The effects of additions of Ti and W on microstructure and mechanical properties of rapidly solidified Al-Fe-V-Si alloys were investigated. Alloy powders were produced by the centrifugal rotary atomization process. After atomization, powders were screened to various mesh sizes to see the effect of powder size on the mechanical properties.These Powders were consolidated into billets using conventional powder metallurgy process, and then extruded into bar form.Microstructural analysis shows that the W addition results in the heterogeneous microstructure.On the other hand, the Ti addition refines the microstructure.Alloy containing both Ti and W has the highest thermal stability of the dispersoid. These variations in the microstructure are well reflected in the mechanical properties in that the Ti containtng alloys (with or without W) have the higher strength and ductility than the W containing alloy. It also shows that the alloys made of the coarser powders have better combinations of strength and ductility than those made of the finer powders.展开更多
Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the ...Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.展开更多
In this paper, the microstructure evolution of the rapidly solidified (RS) Mg61.7Zn34Gd4.3 (at%, atomic ratio) alloy at high temperatures was investigated. The hardness and elastic modulus of the main precipitated pha...In this paper, the microstructure evolution of the rapidly solidified (RS) Mg61.7Zn34Gd4.3 (at%, atomic ratio) alloy at high temperatures was investigated. The hardness and elastic modulus of the main precipitated phases were also analyzed and compared with those of the α-Mg matrix on the basis of nanoindentation tests. The results show that the RS alloy consists of either a petal-like icosahedral quasicrystal (IQC) phase (~20 μm) and block-shaped H1 phase (~15 μm) or IQC particles with an average grain size of ~107 nm as well as a small proportion of amorphous phase, which mainly depends on the holding time at the liquid temperature and the thickness of the ribbons. The IQC phase gradually transforms at 400?C to a short-rod-shaped μ-phase (Mg28.6Zn63.8Gd7.7) with a hexagonal structure. The hardness of the IQC phase is higher than that of H1 phase, and both phases exhibit a higher hardness than the α-Mg matrix and the μ-phase. The elasticity of the H1 phase is superior to that of the α-Mg matrix. The IQC phase possesses a higher elastic modulus than H1 phase. The easily formed H1 phase exhibits the poorest plastic deformation capacity among these phases but a higher elastic modulus than the α-Mg matrix.展开更多
Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly impro...Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified(gas atomization) powder. The thermal conductivity of the Al-50 Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al-50 Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).展开更多
Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of grow...Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively.展开更多
Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperatu...Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperature and elevated temperature were investigated by SEM fractography. Compared with KS282 casting material, the tensile strength of rapidly solidified Al-Si alloy is greatly improved due to silicon particles refining while its density and coefficient of thermal expansion are lower than those of KS282. The wear resistance of RS AlSi is better than that of KS282.展开更多
Al-based Al−V master alloys were prepared by both the stepwise heating melting experiment and stepwise melting cooling experiment with rapid solidification to investigate the transformation of V-containing phases whic...Al-based Al−V master alloys were prepared by both the stepwise heating melting experiment and stepwise melting cooling experiment with rapid solidification to investigate the transformation of V-containing phases which gave different effects on microstructures and properties of commercial Al alloys and Ti alloys,as both melting and solidification processes affect the evolution of V-containing phases largely.The results showed that the raw Al−50wt.%V alloy consisted of needle-like Al_(3)V phase and Al8V5 phase(matrix),while petal-like Al_(3)V,needle-like Al_(7)V and plate-like Al_(10)V phase were present in the Al−V master alloys.The metastable Al_(7)V phase was evolved from Al_(3)V phase and then evolved into Al_(10)V phase during melting process.The number of Al_(10)V phase increased with the decrease of temperature in the range of 800−1000℃.Petal-like Al_(3)V phases could be transformed from Al_(8)V_(5) phase,pre-precipitated from Al−V molten liquid during melting process and precipitated directly during rapid solidification,respectively.展开更多
The non-equilibrium microstructure and a new metastable phase of Al-9.6wt%Mg alloy solidified at 6 GPa were studied by optical microscope,differential scanning calorimetry,X-ray diffraction and transmission electron m...The non-equilibrium microstructure and a new metastable phase of Al-9.6wt%Mg alloy solidified at 6 GPa were studied by optical microscope,differential scanning calorimetry,X-ray diffraction and transmission electron microscope.The results showed that dendrite microstructure was refined,and the solid solubility of Mg in α-Al phase increased greatly.Correspondingly,the lattice parameter of α-Al phase increased.Al3Mg2 phases disappeared under high pressure solidification.In particular,a metastable phase with small size(20 nm or so) was produced in the alloy,its melting temperature range was 464~518.2 ℃,which was higher than that of Al3Mg2 phase(453~465 ℃) under normal pressure.These metastable phases located in the interdendritic position.It was the first time that the metastable phase was found in Al-Mg alloy at a high pressure of 6 GPa.The formation mechanism of the metastable phases was discussed.展开更多
文摘The icosahedral quasicrvstalline phase (i-phase) with the chemical composition of 82.4at%Al. 8.8at%Fe. 3.6at%V and 5.2at%Si in melt spun Al-Fe-V-Si ribbons was found. It is suggested that the temperature and holding time of the melt prior to quenching are the important factors in the formation of the i-phase.
基金Projects(0552nm028 04DZ05616) supported by Shanghai Science and Technology Committee
文摘Ribbons of the two-phase titanium alloy were fabricated by single-roller rapid solidification technique,and aged at high temperature. The microstructure of ribbon samples were characterized with X-ray diffractometer(XRD) and environmental scanning electron microscope(ESEM). The microstructures of the alloy are composed of α phase and supersaturated β phase,and X-ray diffraction results show that all peaks of the α and β phases shift slightly to smaller angles,which can be explained by the disordering growth pattern caused by the rapid solidification process. After aging at 960 ℃ in vacuum,the ribbon is composed of homogeneous α phase and β phase.
基金supported by the JSPS KAKENHI for Scientific Research on Innovative Areas“MFS Materials Science”(JP18H05476)for Scientific Researches(JP20H00312 and JP21H01673)support from the Research Fellowships of the JSPS for Young Scientists(21J13431)。
文摘The mechanisms of multimodal microstructure evolution and the effects of microstructural factors on mechanical properties must be elucidated to design new alloys with superior properties.In this study,high-fracture-toughness and ductile Mg_(96.75)Zn_(0.85)Y_(2.05)Al_(0.35) alloys were developed using rapidly solidified(RS)ribbon-consolidation technique,and the inherited multimodal microstructure evolution during plastic flow consolidation of the RS ribbons was investigated.The use of extrusion for plastic flow consolidation of the heat-treated RS ribbons produced a multimodal microstructure consisting of the worked grains with high Kernel average misorientation(KAM)angles(Group1),the ultrafine dynamically recrystallized(DRXed)grains with intermediate KAM angles(Group 2),and the fine DRXed grains with low KAM angles(Group 3).Groups 1 and 2 contribute to the alloy strengthening,while Group 3 contributes to improving ductility with strainhardening,resulting in enhancement of the fracture toughness.To form the multimodal microstructure,it was necessary to apply plastic flow with equivalent strains of>2.3 to the heat-treated RS ribbons possessing duplex microstructures with different dispersions of the long-period stacking ordered phase.
基金The authors wish to sincerely acknowledge the High Technology Industries Center, Iranian Ministry of Mines and Metals for financial support of the research work.
文摘Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 10^5 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 10^7 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural refinement and modification. The size of the primary silicon decreased from approximately 1μm to 30 nm while the formation of iron-containing intermetallic compounds was suppressed. Supersaturation of the aluminum matrix in an amount of-7 at.% Si was noticed from the XRD patterns During the hot consolidation process, coarsening of the primary silicon particles and precipitation of β-Al5FeSi phase were observed. Evaluation of the compressive strength and hardness of the alloy indicated an improvement in mechanical properties due to the microstructural modification.
文摘Droplets of Co-16%Cu and Co-71.6%Cu peritectic alloys were solidified during container-less processing in a 3-m drop tube. The microstructures of Co-16%Cu alloy droplets were characterized by dendritic or equiaxed α-Co phase with a small amount of Cu-rich solid solution distributed on α-Co phase boundaries. Two thresholds of droplet diameter were observed for Co-16%Cu alloy at which "equiaxed-dendritic-equiaxed" morphological transitions occur to primary α-Co phase. This conspicuous refinement of primary α-Co grains results from the fragmentation of α-Co dendrites caused by re-calescence effect. For Co-71.6% Cu alloy, the primary a-Co phase forms as coarse columnar dendrites in large droplets and equiaxed dendrites in small droplets. Theoretical calculations indicate that Marangoni migration contributes more to the growth of disperse Co-rich spheres by stimulating collision and coalescence than Stokes motion caused by the residual gravity in the falling Co-71.6%Cu alloy droplets.
基金the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105)the Scientific and Technological Creative Foundation of Youth in Northwestern Polytechnical University of China (Grant No. W016223)
文摘The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two sepa- rated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respec- tively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (VM) and Stokes motion velocity (VS) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the VM/VS ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the VM/VS value for Fe(Cu,Co) drop- lets with the same size.
文摘Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.
基金the National Natural Science Foundation of China(Grant Nos.50121101 and 50395105)
文摘The viscose flow and microstructure formation of Fe-Cu peritectic alloy melts are investigated by analyzing the velocity and temperature fields during rapid solidifi-cation,which is verified by rapid quenching experiments.It is found that a large temperature gradient exists along the vertical direction of melt puddle,whereas there is no obvious temperature variation in the tangent direction of roller surface.After being sprayed from a nozzle,the alloy melt changes the magnitude and di-rection of its flow and velocity rapidly at a height of about 180 μm.The horizontal flow velocity increases rapidly,but the vertical flow velocity decreases sharply.A thermal boundary layer with 160-300 μm in height and a momentum boundary layer with 160-240 μm in thickness are formed at the bottom of melt puddle,and the Reynolds number Re is in the range of 870 to 1070 in the boundary layer.With the increase of Re number,the cooling rate increases linearly and the thickness of thermal boundary layer increases monotonically.The thickness of momentum boundary layer decreases slowly at first,then rises slightly and decreases sharply.If Re < 1024,the liquid flow has remarkable effects on the microstructure formation due to dominant momentum transfer.The separated liquid phase is likely to form a fiber-like microstructure.If Re>1024,the heat transfer becomes dominating and the liquid phase flow is suppressed,which results in the formation of fine and uniform equiaxed microstructures.
文摘The splat foils of Al-Sm alloys with 0.04-0.06mm in thickness were made by hammeranvil technique. The estimated cooling rute was 106K/ order of magnitude. The extended solid solubility of Sm in α-Al reached 0.5at. % Sm. The intermediate phase in the rapidlysolidified Al-Sm alloys is Al11Sm3 phase, which is stable only at temperatures above 1339K in equilibrium state and retained to ambient temperature as a metastable phase, whereas the equlibrium intermediate phase, Al3Sm, was restricted to occur.
文摘The effects of additions of Ti and W on microstructure and mechanical properties of rapidly solidified Al-Fe-V-Si alloys were investigated. Alloy powders were produced by the centrifugal rotary atomization process. After atomization, powders were screened to various mesh sizes to see the effect of powder size on the mechanical properties.These Powders were consolidated into billets using conventional powder metallurgy process, and then extruded into bar form.Microstructural analysis shows that the W addition results in the heterogeneous microstructure.On the other hand, the Ti addition refines the microstructure.Alloy containing both Ti and W has the highest thermal stability of the dispersoid. These variations in the microstructure are well reflected in the mechanical properties in that the Ti containtng alloys (with or without W) have the higher strength and ductility than the W containing alloy. It also shows that the alloys made of the coarser powders have better combinations of strength and ductility than those made of the finer powders.
基金Projects(51171152,50871088) supported by the National Natural Science Foundation of ChinaProject(20126102110048) supported by Doctoral Fund of Ministry of Education of China+2 种基金Project(SKLSP201202) supported by Foundation of State Key Laboratory of Solidification,ChinaProject(2012JC2-02) supported by Natural Science Basic Research Plan in Shaanxi Province,ChinaProject (JC201268) supported by the NPU Foundation for Fundamental Research,China
文摘Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.
基金supported by the Youth Science Fund Project of National Natural Science Fund of China (No. 51401070)
文摘In this paper, the microstructure evolution of the rapidly solidified (RS) Mg61.7Zn34Gd4.3 (at%, atomic ratio) alloy at high temperatures was investigated. The hardness and elastic modulus of the main precipitated phases were also analyzed and compared with those of the α-Mg matrix on the basis of nanoindentation tests. The results show that the RS alloy consists of either a petal-like icosahedral quasicrystal (IQC) phase (~20 μm) and block-shaped H1 phase (~15 μm) or IQC particles with an average grain size of ~107 nm as well as a small proportion of amorphous phase, which mainly depends on the holding time at the liquid temperature and the thickness of the ribbons. The IQC phase gradually transforms at 400?C to a short-rod-shaped μ-phase (Mg28.6Zn63.8Gd7.7) with a hexagonal structure. The hardness of the IQC phase is higher than that of H1 phase, and both phases exhibit a higher hardness than the α-Mg matrix and the μ-phase. The elasticity of the H1 phase is superior to that of the α-Mg matrix. The IQC phase possesses a higher elastic modulus than H1 phase. The easily formed H1 phase exhibits the poorest plastic deformation capacity among these phases but a higher elastic modulus than the α-Mg matrix.
文摘Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified(gas atomization) powder. The thermal conductivity of the Al-50 Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al-50 Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).
文摘Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively.
文摘Rapidly solidified hypereutectic Al-Si alloys were prepared by powder hot extrusion. By eliminating vacuum degassing procedure, the fabrication routine was simplified. The tensile fracture mechanisms at room temperature and elevated temperature were investigated by SEM fractography. Compared with KS282 casting material, the tensile strength of rapidly solidified Al-Si alloy is greatly improved due to silicon particles refining while its density and coefficient of thermal expansion are lower than those of KS282. The wear resistance of RS AlSi is better than that of KS282.
基金financially supported by the National Natural Science Foundation of China (No.51804010)the 2020 Yuyou Talent Training Plan Project of North China University of Technology,China (No.214051360020XN212/014)the R&D Program of Beijing Municipal Education Commission,China (No.KM201910009007)。
文摘Al-based Al−V master alloys were prepared by both the stepwise heating melting experiment and stepwise melting cooling experiment with rapid solidification to investigate the transformation of V-containing phases which gave different effects on microstructures and properties of commercial Al alloys and Ti alloys,as both melting and solidification processes affect the evolution of V-containing phases largely.The results showed that the raw Al−50wt.%V alloy consisted of needle-like Al_(3)V phase and Al8V5 phase(matrix),while petal-like Al_(3)V,needle-like Al_(7)V and plate-like Al_(10)V phase were present in the Al−V master alloys.The metastable Al_(7)V phase was evolved from Al_(3)V phase and then evolved into Al_(10)V phase during melting process.The number of Al_(10)V phase increased with the decrease of temperature in the range of 800−1000℃.Petal-like Al_(3)V phases could be transformed from Al_(8)V_(5) phase,pre-precipitated from Al−V molten liquid during melting process and precipitated directly during rapid solidification,respectively.
基金This work is financially supported by the Science Foundation of Harbin Institute of Technology ( No HIT2002 29)
文摘The non-equilibrium microstructure and a new metastable phase of Al-9.6wt%Mg alloy solidified at 6 GPa were studied by optical microscope,differential scanning calorimetry,X-ray diffraction and transmission electron microscope.The results showed that dendrite microstructure was refined,and the solid solubility of Mg in α-Al phase increased greatly.Correspondingly,the lattice parameter of α-Al phase increased.Al3Mg2 phases disappeared under high pressure solidification.In particular,a metastable phase with small size(20 nm or so) was produced in the alloy,its melting temperature range was 464~518.2 ℃,which was higher than that of Al3Mg2 phase(453~465 ℃) under normal pressure.These metastable phases located in the interdendritic position.It was the first time that the metastable phase was found in Al-Mg alloy at a high pressure of 6 GPa.The formation mechanism of the metastable phases was discussed.