Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transm...Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 ℃ and 500 ℃, while the improvement is quite weak at 600 ℃, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al2O3/Si interface structural change. The Al–OH groups play an important role in chemical passivation, and the Al–OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61106060)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.Y2YF028001)the National High Technology Research and Development Program of China(Grant No.2012AA052401)
文摘Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 ℃ and 500 ℃, while the improvement is quite weak at 600 ℃, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al2O3/Si interface structural change. The Al–OH groups play an important role in chemical passivation, and the Al–OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree.