Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on ...Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on composition design for La(Fe,Si/Al)(13)-based materials, which are regarded as one of the most promising magnetic refrigerants in practice. Three prediction models are built by using a machine learning algorithm called gradient boosting regression tree(GBRT) to essentially find the correlation between the Curie temperature(TC), maximum value of magnetic entropy change((?SM)(max)),and chemical composition, all of which yield high accuracy in the prediction of TC and(?SM)(max). The performance metric coefficient scores of determination(R^2) for the three models are 0.96, 0.87, and 0.91. These results suggest that all of the models are well-developed predictive models on the challenging issue of generalization ability for untrained data, which can not only provide us with suggestions for real experiments but also help us gain physical insights to find proper composition for further magnetic refrigeration applications.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
Bulk nanocrystalline Fe3Al materials containing manganese of 10% were prepared by aluminothermic reaction.Hot pressing of those materials was performed at different temperatures and times.The microstructures of the al...Bulk nanocrystalline Fe3Al materials containing manganese of 10% were prepared by aluminothermic reaction.Hot pressing of those materials was performed at different temperatures and times.The microstructures of the alloy were investigated by optical microscope(OM) and electron probe microanalyzer(EPMA).The grain sizes of the materials were analyzed by X-ray diffraction(XRD) and transmission electron microscope(TEM).The results showed that the grain sizes of the materials increase after hot pressing.The grain sizes of the materials decrease with increasing the hot pressing times at the same temperature and the grain sizes of the materials increase with increasing hot pressing temperatures at identical times.The hardness and compressibility of the materials were also tested.The results showed that the hardness decreases with increasing hot pressing times at 800 ℃ and hardness increases with increasing the hot pressing temperatures.The variation of hardness with grain size of the nanocrystalline Fe3Al materials after hot pressing is contrary to the Hall-Petch relation.The materials are not broken during hot pressing and exhibit good plasticity and compressibility.展开更多
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of...The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.展开更多
Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characte...Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.展开更多
Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sinter...Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sintered on Al2O3 base ceramics according to the same thermal treatment system of leucite micro-crystallization reported in previous literatures. The products of each group were analyzed by polarizing microscope, X-ray diffractometer, and an INSTRON material testing machine. Under the thermal treatment system, leucite crystals were formed in samples of each group, and dispersed evenly. Meanwhile, the compressive strengths of group 3 and group 4 were higher than those of group 1 and group 2. Samples of group 3 showed better mechanical properties than others. The conclusions are drawn that Leucite crystals can be controlled in K2O-Al2O3-SiO2 system glass ceramic-Al2O3 ceramic composite material, and the thickness of glass ceramic has a notable influence on the compressive strength of this ceramic composite material.展开更多
A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind...A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented. In addition, a two-time coating method is used to improve the numerical apertures of the compound lenses. Furthermore, the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.展开更多
Five-layered Al/Al-Cu functionally graded material (FGM) was prepared by powder metallurgy technology, and the subsequent heat treatment was carried out for the graded material. The microstructures and distribution ...Five-layered Al/Al-Cu functionally graded material (FGM) was prepared by powder metallurgy technology, and the subsequent heat treatment was carried out for the graded material. The microstructures and distribution of Cu element under pressure sintering (F), solution treatment (T4) and artificial aging treatment (T6) were investigated, and the Vickers hardness and flexural properties of different states were tested. The results showed that sintered compact with dense structure and compositional continuous change was obtained. The second-phase CuAl 2 was dispersively distributed along grain boundary of Al matrix. After solution treatment at 503 C for 3 h, CuAl 2 phase obviously decreased and dissolved into the Al matrix, and the flexural strength was thereupon enhanced to 228.5 MPa. With the subsequent aging treatment at 150 C for 15 h, the majority of flake shaped precipitates θ phases were uniformly distributed in the matrix. And the distribution of Cu element became gradual continuous compared to sintered compact. Meanwhile, the flexural strength increased further, which accompanied with the decline of plasticity.展开更多
Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength...Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature.展开更多
In order to eliminate the disadvantages of the keyhole in conventional friction stir spot welding joint and attain the highstrength lap joint of Al/Cu dissimilar metals,a novel welding technique,named as friction stir...In order to eliminate the disadvantages of the keyhole in conventional friction stir spot welding joint and attain the highstrength lap joint of Al/Cu dissimilar metals,a novel welding technique,named as friction stir spot riveting(FSSR),was proposed.A pinless tool and an extra filling stud were employed.The Al/Cu spot joints without keyhole defect were achieved by the FSSR.A Cu anchor-like structure was formed,which greatly increased the mechanical interlocking between the upper Al sheet and lower Cu sheet.The thin intermetallic compounds containing CuAl2 and CuAl at the Al/Cu interface strengthened the joining interface between the Al sheet and the Cu stud.Increasing rotating velocity increased frictional heat and plastic deformation and then eliminated the interfacial joining defects.The FSSR joint with the maximum tensile shear load of 3.50 kN was achieved at a rotating velocity of 1800 rpm and a dwell time of 20 s,whose fracture path passed through the softened region of upper Al sheet.In summary,the novel FSSR technique has the advantages of strong mechanical interlocking and metallurgical bonding between dissimilar materials,thereby attaining the high-strength spot joint.展开更多
An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR...An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) Al N surface has been compared with that of the(1122) Al Ga N surface. The maximum MRR has been found to be 562 nm/h for the semi-polar(1122) Al N surface, under the experimental conditions of 38 k Pa pressure,90 rpm platen velocity, 30 rpm carrier velocity, slurry p H 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of 1.2 nm and 0.7 nm, over a large scanning area of 0.70×0.96 mm^2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.展开更多
基金supported by the National Basic Research Program of China(Grant No.2014CB643702)the National Natural Science Foundation of China(Grant No.51590880)+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KJZD-EW-M05)the National Key Research and Development Program of China(Grant No.2016YFB0700903)
文摘Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on composition design for La(Fe,Si/Al)(13)-based materials, which are regarded as one of the most promising magnetic refrigerants in practice. Three prediction models are built by using a machine learning algorithm called gradient boosting regression tree(GBRT) to essentially find the correlation between the Curie temperature(TC), maximum value of magnetic entropy change((?SM)(max)),and chemical composition, all of which yield high accuracy in the prediction of TC and(?SM)(max). The performance metric coefficient scores of determination(R^2) for the three models are 0.96, 0.87, and 0.91. These results suggest that all of the models are well-developed predictive models on the challenging issue of generalization ability for untrained data, which can not only provide us with suggestions for real experiments but also help us gain physical insights to find proper composition for further magnetic refrigeration applications.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金Item Sponsored by National Natural Science Foundation of China(50674051)
文摘Bulk nanocrystalline Fe3Al materials containing manganese of 10% were prepared by aluminothermic reaction.Hot pressing of those materials was performed at different temperatures and times.The microstructures of the alloy were investigated by optical microscope(OM) and electron probe microanalyzer(EPMA).The grain sizes of the materials were analyzed by X-ray diffraction(XRD) and transmission electron microscope(TEM).The results showed that the grain sizes of the materials increase after hot pressing.The grain sizes of the materials decrease with increasing the hot pressing times at the same temperature and the grain sizes of the materials increase with increasing hot pressing temperatures at identical times.The hardness and compressibility of the materials were also tested.The results showed that the hardness decreases with increasing hot pressing times at 800 ℃ and hardness increases with increasing the hot pressing temperatures.The variation of hardness with grain size of the nanocrystalline Fe3Al materials after hot pressing is contrary to the Hall-Petch relation.The materials are not broken during hot pressing and exhibit good plasticity and compressibility.
基金the National Natural Science Foundation of China (No. 50375019).
文摘The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.
基金supported by the National Natural Science Foundation of China (No.50574075)Program for New Century Excellent Talents in University(No.NCET-05-0873)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20060700011)
文摘Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.
基金Funded by the Project for Tackling Key Problems in Science and Technology of Wuhan(No.201262523841)
文摘Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sintered on Al2O3 base ceramics according to the same thermal treatment system of leucite micro-crystallization reported in previous literatures. The products of each group were analyzed by polarizing microscope, X-ray diffractometer, and an INSTRON material testing machine. Under the thermal treatment system, leucite crystals were formed in samples of each group, and dispersed evenly. Meanwhile, the compressive strengths of group 3 and group 4 were higher than those of group 1 and group 2. Samples of group 3 showed better mechanical properties than others. The conclusions are drawn that Leucite crystals can be controlled in K2O-Al2O3-SiO2 system glass ceramic-Al2O3 ceramic composite material, and the thickness of glass ceramic has a notable influence on the compressive strength of this ceramic composite material.
基金This work was supported by the Research Foundation from Ministry of Education of China (No. 204060), and the Natural Science Foundation of Zhejiang Province (No. Y104203).
文摘A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented. In addition, a two-time coating method is used to improve the numerical apertures of the compound lenses. Furthermore, the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.
基金supported by the National Natural Science Foundation of China(No.50871025)
文摘Five-layered Al/Al-Cu functionally graded material (FGM) was prepared by powder metallurgy technology, and the subsequent heat treatment was carried out for the graded material. The microstructures and distribution of Cu element under pressure sintering (F), solution treatment (T4) and artificial aging treatment (T6) were investigated, and the Vickers hardness and flexural properties of different states were tested. The results showed that sintered compact with dense structure and compositional continuous change was obtained. The second-phase CuAl 2 was dispersively distributed along grain boundary of Al matrix. After solution treatment at 503 C for 3 h, CuAl 2 phase obviously decreased and dissolved into the Al matrix, and the flexural strength was thereupon enhanced to 228.5 MPa. With the subsequent aging treatment at 150 C for 15 h, the majority of flake shaped precipitates θ phases were uniformly distributed in the matrix. And the distribution of Cu element became gradual continuous compared to sintered compact. Meanwhile, the flexural strength increased further, which accompanied with the decline of plasticity.
基金the project from the International S&T Cooperation (No.2011DFR 50630)Special Research Program for Innovation Talents from Harbin Municipality of Science and Technology (2012RFXXG071,2010RFQXG020)Harbin Science and Technology Innovation Youth Talents Fund (No.2010RFQXG003)
文摘Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature.
基金financially supported by the National Natural Science Foundation of China (Nos.51705339 and 51905355)。
文摘In order to eliminate the disadvantages of the keyhole in conventional friction stir spot welding joint and attain the highstrength lap joint of Al/Cu dissimilar metals,a novel welding technique,named as friction stir spot riveting(FSSR),was proposed.A pinless tool and an extra filling stud were employed.The Al/Cu spot joints without keyhole defect were achieved by the FSSR.A Cu anchor-like structure was formed,which greatly increased the mechanical interlocking between the upper Al sheet and lower Cu sheet.The thin intermetallic compounds containing CuAl2 and CuAl at the Al/Cu interface strengthened the joining interface between the Al sheet and the Cu stud.Increasing rotating velocity increased frictional heat and plastic deformation and then eliminated the interfacial joining defects.The FSSR joint with the maximum tensile shear load of 3.50 kN was achieved at a rotating velocity of 1800 rpm and a dwell time of 20 s,whose fracture path passed through the softened region of upper Al sheet.In summary,the novel FSSR technique has the advantages of strong mechanical interlocking and metallurgical bonding between dissimilar materials,thereby attaining the high-strength spot joint.
基金financial support from the Department of Science and Technology(DST),Government of India(No,SR/S2/Cmp-0009/2011)partial support from the Board of Research in Nuclear Sciences(BRNS),Department of Atomic Energy(DAE),Government of India(No.-34/14/43/2014-BRNS)with ATC
文摘An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) Al N surface has been compared with that of the(1122) Al Ga N surface. The maximum MRR has been found to be 562 nm/h for the semi-polar(1122) Al N surface, under the experimental conditions of 38 k Pa pressure,90 rpm platen velocity, 30 rpm carrier velocity, slurry p H 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of 1.2 nm and 0.7 nm, over a large scanning area of 0.70×0.96 mm^2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.