The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compar...The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.展开更多
This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 parti...This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 particles in the matrix were uniformly dispersed. The inter faces between nail and TiB_2 were atomically flat. sharp and free from any inter facial phases in most cases. In some cases. however. thin inter facial amorphous layers existed at NiAl/ TiB_2 interfaces. In addition, the microstructure and inter faces were highly thermal stable. In all processing states. the yield strengths at room temperature or at 1000℃ of the composite were approximately three times as strong as that of the unrein forced NiAl. The ambient fracture toughness of the composite was also superior to monolithic NiAl.展开更多
Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect ...Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the m...展开更多
The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the ma...The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.展开更多
Electron microscope examination of the microstructure, interface and fracture surface of SiC particulate reinforced 2024 aluminium alloy composites produced by powder mixing and semi-solid extrusion process was presen...Electron microscope examination of the microstructure, interface and fracture surface of SiC particulate reinforced 2024 aluminium alloy composites produced by powder mixing and semi-solid extrusion process was presented. The microstructure of SiC p/2024 composites fabricated by the present method is characterized by uniformly distributed SiC particulates in well-densified matrix. Conventional transmission electron microscopy(TEM) reveals the interface between the SiC particulates and the aluminium matrix. It is shown that this interface provides very strong bonding which is further evidenced by the fractographic results, and that there is no apparent chemical reaction. Examination of the fracture surface indicates that the bonding strength between the SiC particulates and the aluminium alloy matrix is stronger than that of the matrix. The dimples and tearing edges on the fracture surface of composites are obviously observed.展开更多
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ...50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.展开更多
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites we...Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.展开更多
10%(volume fraction) SiCp/Al-Mg composites with different Mg contents were successfully fabricated by semi-solid mechanical stirring technique under optimum processing conditions.Effects of Mg content on microstructur...10%(volume fraction) SiCp/Al-Mg composites with different Mg contents were successfully fabricated by semi-solid mechanical stirring technique under optimum processing conditions.Effects of Mg content on microstructure and mechanical properties were studied by scanning electron microscopy(SEM),X-ray diffractometry(XRD) and transmission electron microscopy(TEM).The results indicate that SiC particles disperse homogeneously in Al-Mg matrix and interfacial reaction between Al matrix and SiC particles is effectively controlled.Distribution of SiCp reinforcement and interfacial bonding are improved by adding Mg.Additionally,the mechanical properties of composites are remarkably improved with the Mg content increasing.展开更多
The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interf...The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.展开更多
6061Al matrix composites reinforced by ZnO-coated Al18B4O33 whiskers were fabricated by a semi-solid mechanical stirring technique.The effects of ZnO coating on interfacial reaction between whiskers and matrix and the...6061Al matrix composites reinforced by ZnO-coated Al18B4O33 whiskers were fabricated by a semi-solid mechanical stirring technique.The effects of ZnO coating on interfacial reaction between whiskers and matrix and the tensile properties of the composites were investigated.Tensile tests on composites were performed at room temperature,and microstructures were observed by scanning electron microscopy(SEM).The results show that the surface treatment of whiskers could reduce interfacial reaction effectively,improve the wettability between whiskers and matrix and enhance the tensile properties of the composites obviously.In addition,semi-solid stirring parameters were also under preliminary study.The stirring parameters were determined by the distribution of whiskers in the composites.The composites with homogeneously distributed whiskers were fabricated by semi-solid stirring at 610 ℃ for 30 min.展开更多
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of...The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.展开更多
To improve the mechanical properties of alumina particulates reinforced steel matrix composite, Ti powder was added into the alumina preform, a 5140 steel matrix composite was fabricated by squeeze casting, and the in...To improve the mechanical properties of alumina particulates reinforced steel matrix composite, Ti powder was added into the alumina preform, a 5140 steel matrix composite was fabricated by squeeze casting, and the influences of Ti powder on the microstructure, hardness and bending strength of the composite were investigated, compared with the composite without adding Ti powder. Applied Ti powder and alumina particulates were 10-25 μm and 100-180 μm in size, respectively. Both composites were successfully fabricated, however Ti powder addition increased the infiltration thickness of the composite. In the Ti contained composite, a TiC film in micron scale is formed on the surface of alumina particles, many TiC aggregates are dispersed in the steel matrix without obvious remaining Ti powder. The hardness and the three-point bending strength of the composite reach 49.5 HRC and 1 018 MPa, respectively, which are 17.9% and 52.4% higher than those of the composite in the absence of Ti addition. Fracture morphology shows that the debonding of alumina particulates is eliminated for the composite in the presence of Ti addition. Sessile drop test shows the average wetting angle between 5140 steel and that of Ti coated Al2O3 is about 82.15°, much lower than the wetting angle 150° between steel and pure Al2O3. Therefore, the increase in the mechanical properties of the composite is attributed to the improvement of Al2O3 p/steel interface wetting and bonding by adding Ti powder in the preform.展开更多
In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the T...In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.展开更多
The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were ana...The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Grain size of the composites prepared by two-stage solution is smaller than that by single-stage solution. After single-stage solution aging treatment, fine precipitates of both η and AlZnMgCu-rich phase can be found both intragranularly and intergranularly. While after the two-stage solution, an amorphous Si-Cu-Al-O (5 nm) layer appears at the interface. The addition of Ni and Zr modified the influence of the two-stage solution and inhibited the growth of the 7090/SiCp composite grain size. Heat treatments can significantly improve the fracture toughness of the composite. The fracture toughness first decreases then increases with the elongation of the aging time.展开更多
The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractog...The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractographs of Al-Si MMCs was investigated by SEM and TEM.Tensile properties at room temperature and 200℃were tested.It is shown that the addition of Pr is favorable to produce uniform microstructures and modify the eutectic Si crystal effectively.Compounds/intermetallics with high content of Pr are formed at the interface between short fiber and matrix.Yield strength(σ 0.2 ),ultimate tensile strength(σ b)and fracture elongation of Al-Si MMCs are improved by adding suitable amount of Pr.Compared with those values of Al-Si based MMC at 200 ℃,σ 0.2 andσ bof MMC with 0.29%Pr are increased by 33%and 55%,respectively.The tensile fracture surface of Al-Si MMCs with Pr addition presents ductile fracture features.展开更多
The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were ...The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.展开更多
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit...In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.展开更多
The Si_3N_4 whisker reinforced 6061Al composite with bending strength of 790 MPa was prepared by squeeze casting process.After heat-treatment under T6 regime i.e.530℃, 1 h solutioning and 160℃,24 h aging,an incremen...The Si_3N_4 whisker reinforced 6061Al composite with bending strength of 790 MPa was prepared by squeeze casting process.After heat-treatment under T6 regime i.e.530℃, 1 h solutioning and 160℃,24 h aging,an increment in strength and microhardness may be over 20% and 28% respectively,The microstructures of Si_3N_4 whisker and Si_3N_4/Al interface were observed by meas of HRTEM.The relation between interracial structure and composite properties was discussed.展开更多
基金Projects(2019JJ60050,2018JJ3121) supported by the Natural Science Foundation of Hunan Province,ChinaProject(KFBM20170004) supported by the Jiangsu Province Key Laboratory of Materials Surface Science and Technology,China
文摘The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.
文摘This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 particles in the matrix were uniformly dispersed. The inter faces between nail and TiB_2 were atomically flat. sharp and free from any inter facial phases in most cases. In some cases. however. thin inter facial amorphous layers existed at NiAl/ TiB_2 interfaces. In addition, the microstructure and inter faces were highly thermal stable. In all processing states. the yield strengths at room temperature or at 1000℃ of the composite were approximately three times as strong as that of the unrein forced NiAl. The ambient fracture toughness of the composite was also superior to monolithic NiAl.
文摘Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the m...
基金This research is supported by the National Natural Science Foundation of China (under Grant No.59771014 and No.50071019). The help of the National Advanced Material Open Research Lab of Tsinghua University is gratefully acknowledged.
文摘The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.
文摘Electron microscope examination of the microstructure, interface and fracture surface of SiC particulate reinforced 2024 aluminium alloy composites produced by powder mixing and semi-solid extrusion process was presented. The microstructure of SiC p/2024 composites fabricated by the present method is characterized by uniformly distributed SiC particulates in well-densified matrix. Conventional transmission electron microscopy(TEM) reveals the interface between the SiC particulates and the aluminium matrix. It is shown that this interface provides very strong bonding which is further evidenced by the fractographic results, and that there is no apparent chemical reaction. Examination of the fracture surface indicates that the bonding strength between the SiC particulates and the aluminium alloy matrix is stronger than that of the matrix. The dimples and tearing edges on the fracture surface of composites are obviously observed.
基金Project (AWJ-M13-15) supported by the Open Fund of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.
基金Project(CXZZ20140506150310438)supported by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.
基金Project(2006CB605203-3) supported by the National Basic Research Program of China
文摘10%(volume fraction) SiCp/Al-Mg composites with different Mg contents were successfully fabricated by semi-solid mechanical stirring technique under optimum processing conditions.Effects of Mg content on microstructure and mechanical properties were studied by scanning electron microscopy(SEM),X-ray diffractometry(XRD) and transmission electron microscopy(TEM).The results indicate that SiC particles disperse homogeneously in Al-Mg matrix and interfacial reaction between Al matrix and SiC particles is effectively controlled.Distribution of SiCp reinforcement and interfacial bonding are improved by adding Mg.Additionally,the mechanical properties of composites are remarkably improved with the Mg content increasing.
文摘The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.
基金Project(2006CB605203-3) supported by the National Basic Research Program of China
文摘6061Al matrix composites reinforced by ZnO-coated Al18B4O33 whiskers were fabricated by a semi-solid mechanical stirring technique.The effects of ZnO coating on interfacial reaction between whiskers and matrix and the tensile properties of the composites were investigated.Tensile tests on composites were performed at room temperature,and microstructures were observed by scanning electron microscopy(SEM).The results show that the surface treatment of whiskers could reduce interfacial reaction effectively,improve the wettability between whiskers and matrix and enhance the tensile properties of the composites obviously.In addition,semi-solid stirring parameters were also under preliminary study.The stirring parameters were determined by the distribution of whiskers in the composites.The composites with homogeneously distributed whiskers were fabricated by semi-solid stirring at 610 ℃ for 30 min.
基金the National Natural Science Foundation of China (No. 50375019).
文摘The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.
基金Funded by National Natural Science Foundation of China(No.51265019)
文摘To improve the mechanical properties of alumina particulates reinforced steel matrix composite, Ti powder was added into the alumina preform, a 5140 steel matrix composite was fabricated by squeeze casting, and the influences of Ti powder on the microstructure, hardness and bending strength of the composite were investigated, compared with the composite without adding Ti powder. Applied Ti powder and alumina particulates were 10-25 μm and 100-180 μm in size, respectively. Both composites were successfully fabricated, however Ti powder addition increased the infiltration thickness of the composite. In the Ti contained composite, a TiC film in micron scale is formed on the surface of alumina particles, many TiC aggregates are dispersed in the steel matrix without obvious remaining Ti powder. The hardness and the three-point bending strength of the composite reach 49.5 HRC and 1 018 MPa, respectively, which are 17.9% and 52.4% higher than those of the composite in the absence of Ti addition. Fracture morphology shows that the debonding of alumina particulates is eliminated for the composite in the presence of Ti addition. Sessile drop test shows the average wetting angle between 5140 steel and that of Ti coated Al2O3 is about 82.15°, much lower than the wetting angle 150° between steel and pure Al2O3. Therefore, the increase in the mechanical properties of the composite is attributed to the improvement of Al2O3 p/steel interface wetting and bonding by adding Ti powder in the preform.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51804349)the China Postdoctoral Science Foundation(2018M632986)the Natural Science Foundation of Hunan Province,China(2019JJ50766).
文摘In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.
基金Project (02Gky2004) supported by Hunan Provincial Science and Technology Department, China
文摘The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Grain size of the composites prepared by two-stage solution is smaller than that by single-stage solution. After single-stage solution aging treatment, fine precipitates of both η and AlZnMgCu-rich phase can be found both intragranularly and intergranularly. While after the two-stage solution, an amorphous Si-Cu-Al-O (5 nm) layer appears at the interface. The addition of Ni and Zr modified the influence of the two-stage solution and inhibited the growth of the 7090/SiCp composite grain size. Heat treatments can significantly improve the fracture toughness of the composite. The fracture toughness first decreases then increases with the elongation of the aging time.
基金Project(2008B080703001)supported by Guangdong Provincial Science&Technology Breau,China
文摘The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractographs of Al-Si MMCs was investigated by SEM and TEM.Tensile properties at room temperature and 200℃were tested.It is shown that the addition of Pr is favorable to produce uniform microstructures and modify the eutectic Si crystal effectively.Compounds/intermetallics with high content of Pr are formed at the interface between short fiber and matrix.Yield strength(σ 0.2 ),ultimate tensile strength(σ b)and fracture elongation of Al-Si MMCs are improved by adding suitable amount of Pr.Compared with those values of Al-Si based MMC at 200 ℃,σ 0.2 andσ bof MMC with 0.29%Pr are increased by 33%and 55%,respectively.The tensile fracture surface of Al-Si MMCs with Pr addition presents ductile fracture features.
基金financially supported by the National Key Research and Development Program of China(No.2022YFE0121400)the National Natural Science Foundation of China(Nos.52071117,52111530297,51601047)+1 种基金the Heilongjiang Provincial Science Fund for Distinguished Young Scholars,China(No.JQ2021E002)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120016)。
文摘The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.
基金supported by the National Natural Science Foundation of China(No.50671044)the Sci-tech Development Project of Jilin Province of China(No.20070506)
文摘In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.
文摘The Si_3N_4 whisker reinforced 6061Al composite with bending strength of 790 MPa was prepared by squeeze casting process.After heat-treatment under T6 regime i.e.530℃, 1 h solutioning and 160℃,24 h aging,an increment in strength and microhardness may be over 20% and 28% respectively,The microstructures of Si_3N_4 whisker and Si_3N_4/Al interface were observed by meas of HRTEM.The relation between interracial structure and composite properties was discussed.