Young's modulus is a critical parameter for designing lightweight structure, but Al and its alloys only demonstrate alimited value of 70-72 GPa. The introduction of carbon nanotubes (CNTs) is an effective way to ma...Young's modulus is a critical parameter for designing lightweight structure, but Al and its alloys only demonstrate alimited value of 70-72 GPa. The introduction of carbon nanotubes (CNTs) is an effective way to make Al and its alloysstiffer. However, little research attention has been paid to Young's modulus of CNT/Al nanocomposites attributed to theuncertain measurement and unconvincing stiffening effect of CNTs. In this work, improved Young's modulus of 82.4 ± 0.4 GPa has been achieved in 1.5 wt% CNT/Al nanocomposite fabricated by flake powder metallurgy, which wasdetermined by resonance test and 13.5% higher than 72.6 ± 0.64 GPa of Al matrix. A comparative study and statisticalanalysis further revealed that Young's modulus determined by tensile test was relatively imprecise (83.1 ± 4.0 GPa) dueto the low-stress microplasficity or interface decohesion during tensile deformation of CNT/Al nanocomposite, while thevalue (98-100 GPa) was highly overestimated by nanoindentation due to the "pile-up" effect. This work shows an in-depthdiscussion on studying Young's modulus of CNT/Al nanocomposites.展开更多
The fabrication of high strength Al 7068?5%TiC (mass fraction) nanocomposite was studied by mechanical alloying and hot pressing routes. Considering densification importance and grain growth effects, hot pressing p...The fabrication of high strength Al 7068?5%TiC (mass fraction) nanocomposite was studied by mechanical alloying and hot pressing routes. Considering densification importance and grain growth effects, hot pressing process conditions for producing bulk nanocomposite were optimized using statistical Taguchi method based on compressive strength achievement. The Taguchi results indicate that 30 min hot pressing under pressure of 500 MPa at 385 °C provides high compressive strength and hardness of 938 MPa and HV 265, respectively. More interestingly, analysis of variance proves that the applied pressure is the most influential factor for hot pressing of the nanocomposite. The contribution percentages of factors in hot pressing terms are as follows: applied pressure (61.3%), exposed temperature (29.53%) and dwelling hot pressing time (4.49%).展开更多
The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron mic...The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content.展开更多
In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative...In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.展开更多
The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined condit...The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites.展开更多
The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS)...The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.展开更多
Powder mixture of ball-milled aluminium and functionalized multi-walled carbon nanotubes was compacted via spark plasma sintering (SPS) to study effects of sintering temperature and heating rate. An increase in sint...Powder mixture of ball-milled aluminium and functionalized multi-walled carbon nanotubes was compacted via spark plasma sintering (SPS) to study effects of sintering temperature and heating rate. An increase in sintering temperature led to an increase in crystallite size and density, whereas an increase in heating rate exerted the opposite effect. The crystallite size and relative density increased by 85.0% and 14.3%, respectively, upon increasing the sintering temperature from 400 to 600℃, whereas increasing the heating rate from 25 to 100 ℃/min led to respective reduction by 30.0% of crystallite size and 1.8% of relative density. The total punch displacement during SPS for the nanocomposite sintered at 600 ℃ (1.96 mm) was much higher than that of the sample sintered at 400 ℃ (1.02 mm) confirming positive impact of high sintering temperature on densification behaviour. The maximum improvement in mechanical properties was exhibited by the nanocomposite sintered at 600 ℃ at a heating rate of 50℃/min displaying microhardness of 81 4- 3.6 VHN and elastic modulus of 89 4- 5.3 GPa. The nanocomposites consolidated at 400 ℃ and 100 ℃/min, in spite of having relatively smaller crystallite size, exhibited poor mechanical properties indicating the detrimental effect of porosity on the mechanical properties.展开更多
Increasing nanoparticle volume fraction has been proved to be effective in improving the strength of nanoparticle reinforced Al matrix nanocomposite. However, the underlying mechanisms for the ultrahigh strength of th...Increasing nanoparticle volume fraction has been proved to be effective in improving the strength of nanoparticle reinforced Al matrix nanocomposite. However, the underlying mechanisms for the ultrahigh strength of those nanocomposites with high volume fraction(> 10 vol.%) nanoparticles are short of experimental research. In this study, the strengthening mechanisms of high strength Al matrix nanocomposite reinforced with 15 vol.% Al_(2)O_(3) nanoparticles were investigated experimentally and analyzed theoretically. The results show that the thermal mismatch induced geometrically necessary dislocations exhibit a negligible strengthening effect, because of their low density in the nanocomposite that is contradiction to the conventional dislocation punch model. Orowan mechanism makes a major strengthening contribution in view of the deformation process dominated by nanoparticle-dislocation interactions due to the extreme pinning effect of nanoparticles on dislocation motion. In addition, the several mechanisms including grain boundary strengthening, load transfer strengthening, and elastic modulus mismatch induced dislocation strengthening contribute to the strength increase.展开更多
In this study,Al matrix nanocomposites containing 1,2 and 4 wt% nano-boron nitride were fabricated by mechanical milling and hot extrusion.The mechanical properties of all extruded samples were evaluated.Also,the morp...In this study,Al matrix nanocomposites containing 1,2 and 4 wt% nano-boron nitride were fabricated by mechanical milling and hot extrusion.The mechanical properties of all extruded samples were evaluated.Also,the morphology and microstructure of the milled composite powders were characterized using two types of electron micro-scope.The results showed that a high fraction of the boron nitride nanoparticles dissolved and formed a solid solution in Al matrix during the milling process.Through the process of solid solution formation,the work hardening rate of the composite powders increased.This led to a morphological change in the composite powders and resulted in equiaxed shape.The powder particle size also decreased after the milling process.By increasing boron nitride content within a range of 0--4 wt% in the hot extruded samples,tensile stress increased from 212 to 333 MPa.The hardness of the nanocomposite samples including 1,2 and 4 wt% boron nitride improved approximately 55,70 and 90% in comparison with pure Al,respectively.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2016YFB1200506,2017YFB1201105)the Natural Science Foundation of China(Nos.51671130,51771110,51771111,51371115)+2 种基金the Ministry of Education of China(Nos.62501036031,B16032)Aeronautical Science Foundation of China(2016ZF57011)Shanghai Science&Technology Committee(Nos.17ZR1441500,15JC1402100,14DZ2261200 and 14520710100)
文摘Young's modulus is a critical parameter for designing lightweight structure, but Al and its alloys only demonstrate alimited value of 70-72 GPa. The introduction of carbon nanotubes (CNTs) is an effective way to make Al and its alloysstiffer. However, little research attention has been paid to Young's modulus of CNT/Al nanocomposites attributed to theuncertain measurement and unconvincing stiffening effect of CNTs. In this work, improved Young's modulus of 82.4 ± 0.4 GPa has been achieved in 1.5 wt% CNT/Al nanocomposite fabricated by flake powder metallurgy, which wasdetermined by resonance test and 13.5% higher than 72.6 ± 0.64 GPa of Al matrix. A comparative study and statisticalanalysis further revealed that Young's modulus determined by tensile test was relatively imprecise (83.1 ± 4.0 GPa) dueto the low-stress microplasficity or interface decohesion during tensile deformation of CNT/Al nanocomposite, while thevalue (98-100 GPa) was highly overestimated by nanoindentation due to the "pile-up" effect. This work shows an in-depthdiscussion on studying Young's modulus of CNT/Al nanocomposites.
文摘The fabrication of high strength Al 7068?5%TiC (mass fraction) nanocomposite was studied by mechanical alloying and hot pressing routes. Considering densification importance and grain growth effects, hot pressing process conditions for producing bulk nanocomposite were optimized using statistical Taguchi method based on compressive strength achievement. The Taguchi results indicate that 30 min hot pressing under pressure of 500 MPa at 385 °C provides high compressive strength and hardness of 938 MPa and HV 265, respectively. More interestingly, analysis of variance proves that the applied pressure is the most influential factor for hot pressing of the nanocomposite. The contribution percentages of factors in hot pressing terms are as follows: applied pressure (61.3%), exposed temperature (29.53%) and dwelling hot pressing time (4.49%).
文摘The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content.
文摘In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.
基金supported by National Nature Science Foundation of China(No.22075230)the financial support of the doctoral research foundation(No.19ZX7102)from Southwest University of Science and Technology。
文摘The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51337002,51077028,51502063 and 51307046the Foundation of Harbin Science and Technology Bureau of Heilongjiang Province under Grant No RC2014QN017034
文摘The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.
基金supported financially by the‘‘SERC Funding’’ from Department of Science and Technology,Government of India(No.SERC/ET-0388/2012)
文摘Powder mixture of ball-milled aluminium and functionalized multi-walled carbon nanotubes was compacted via spark plasma sintering (SPS) to study effects of sintering temperature and heating rate. An increase in sintering temperature led to an increase in crystallite size and density, whereas an increase in heating rate exerted the opposite effect. The crystallite size and relative density increased by 85.0% and 14.3%, respectively, upon increasing the sintering temperature from 400 to 600℃, whereas increasing the heating rate from 25 to 100 ℃/min led to respective reduction by 30.0% of crystallite size and 1.8% of relative density. The total punch displacement during SPS for the nanocomposite sintered at 600 ℃ (1.96 mm) was much higher than that of the sample sintered at 400 ℃ (1.02 mm) confirming positive impact of high sintering temperature on densification behaviour. The maximum improvement in mechanical properties was exhibited by the nanocomposite sintered at 600 ℃ at a heating rate of 50℃/min displaying microhardness of 81 4- 3.6 VHN and elastic modulus of 89 4- 5.3 GPa. The nanocomposites consolidated at 400 ℃ and 100 ℃/min, in spite of having relatively smaller crystallite size, exhibited poor mechanical properties indicating the detrimental effect of porosity on the mechanical properties.
基金financially supported by the Key Research and Development Project in Sichuan Province(Grant No.2020YFG0140)the Fundamental Research Funds for the Central Universities(Grant No.2682020CX47)+1 种基金the China Postdoctoral Science Foundation(Grant No.2020M683349)。
文摘Increasing nanoparticle volume fraction has been proved to be effective in improving the strength of nanoparticle reinforced Al matrix nanocomposite. However, the underlying mechanisms for the ultrahigh strength of those nanocomposites with high volume fraction(> 10 vol.%) nanoparticles are short of experimental research. In this study, the strengthening mechanisms of high strength Al matrix nanocomposite reinforced with 15 vol.% Al_(2)O_(3) nanoparticles were investigated experimentally and analyzed theoretically. The results show that the thermal mismatch induced geometrically necessary dislocations exhibit a negligible strengthening effect, because of their low density in the nanocomposite that is contradiction to the conventional dislocation punch model. Orowan mechanism makes a major strengthening contribution in view of the deformation process dominated by nanoparticle-dislocation interactions due to the extreme pinning effect of nanoparticles on dislocation motion. In addition, the several mechanisms including grain boundary strengthening, load transfer strengthening, and elastic modulus mismatch induced dislocation strengthening contribute to the strength increase.
基金financially supported by the Shiraz University, Shiraz Iran, and ‘‘Iranian Nanotechnology Initiative’’ and research facilities of the Material Research School, Isfahan, Iransupported by the research council office of Shiraz University through Grant Number 94-GR-ENG-15
文摘In this study,Al matrix nanocomposites containing 1,2 and 4 wt% nano-boron nitride were fabricated by mechanical milling and hot extrusion.The mechanical properties of all extruded samples were evaluated.Also,the morphology and microstructure of the milled composite powders were characterized using two types of electron micro-scope.The results showed that a high fraction of the boron nitride nanoparticles dissolved and formed a solid solution in Al matrix during the milling process.Through the process of solid solution formation,the work hardening rate of the composite powders increased.This led to a morphological change in the composite powders and resulted in equiaxed shape.The powder particle size also decreased after the milling process.By increasing boron nitride content within a range of 0--4 wt% in the hot extruded samples,tensile stress increased from 212 to 333 MPa.The hardness of the nanocomposite samples including 1,2 and 4 wt% boron nitride improved approximately 55,70 and 90% in comparison with pure Al,respectively.