Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy...Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specific heat capacity were calculated to estimate the melting temperatures. The melting point is 540+10 K for the icosahedral structure, 500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure. With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.展开更多
The solar cell market is predominantly based on textured screen-printed solar cells.Due to parasitic absorption in nanostructures,using plasmonic processes to obtain an enhancement that exceeds 2.5%of the short-circui...The solar cell market is predominantly based on textured screen-printed solar cells.Due to parasitic absorption in nanostructures,using plasmonic processes to obtain an enhancement that exceeds 2.5%of the short-circuit photocurrent density is challenging.In this paper,a 7.2%enhancement in the photocurrent density can be achieved through the integration of plasmonic Al nanoparticles and wrinkle-like graphene sheets.For the first time,we experimentally achieve Al nanoparticle-enhanced solar cells.An innovative thermal evaporation method is proposed to fabricate low-coverage Al nanoparticle arrays on solar cells.Due to the ultraviolet(UV)plasmon resonance of Al nanoparticles,the performance enhancement of the solar cells is significantly greater than that from Ag nanoparticles.Subsequently,we deposit wrinkle-like graphene sheets over the Al nanoparticle-enhanced solar cells.Compared with planar graphene sheets,the bend carbon layer also exhibits a broadband light-trapping effect.Our results exceed the limit of plasmonic light trapping in textured screen-printed silicon solar cells.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
Single-phase Ag2Al intermetallic nanoparticles, and Ag and Al metallic nanoparticles were synthesized by the flow-levitation (FL) method. Measurements of d-spacings from X-ray diffraction and electron diffraction co...Single-phase Ag2Al intermetallic nanoparticles, and Ag and Al metallic nanoparticles were synthesized by the flow-levitation (FL) method. Measurements of d-spacings from X-ray diffraction and electron diffraction confirmed that the intermetallic nanoparticles had the hexagonal Ag2Al structure. The morphology, crystal structure and chemical composition of Ag2Al nanoparticles were investigated by transmission electron microscopy, X-ray diffraction and induction-coupled plasma spectroscopy. A thin amorphous coating was formed around the particles when exposed to air. Based on the XPS measurements, the surface coating of the Ag2Al nanoparticles could most likely be aluminum oxide or silver aluminum oxide. Therefore, the single-phase nanocrystalline Ag2Al intermetallic compound particles can be produced by adjusting some experimental parameters in FL method.展开更多
Grinding requires high specific energy which develops high temperatures at wheel work piece interface. High temperatures impair work piece quality by inducing tensile residual stress, burn, and micro cracks. Control o...Grinding requires high specific energy which develops high temperatures at wheel work piece interface. High temperatures impair work piece quality by inducing tensile residual stress, burn, and micro cracks. Control of grinding temperature is achieved by providing effective cooling and lubrication. Conventional flood cooling is often ineffective due to enormous heat generation and improper heat dissipation. This paper deals with an investigation on using TRIM E709 emulsifier with Al_2O_3 nanoparticles to reduce the heat generated at grinding zone. An experimental setup has been developed for this and detailed comparison has been done with dry, TRIM E709 emulsifier and TRIM E709 emulsifier with Al_2O_3 nanoparticles in grinding EN-31 steel in terms of temperature distribution and surface finish. Results shows that surface roughness and heat penetration were decreased with addition of Al_2O_3 nanoparticles.展开更多
The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and h...The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings.展开更多
In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag (GGBFS) and A1203 nanoparticles as binder have been investigated. Por...In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag (GGBFS) and A1203 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of GGBFS and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, GGBFS was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. A1203 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of GGBFS and physical and mechanical properties of the specimens were measured. A1203 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increase of the A1203 nanoparticles' content by more than 3.0 wt% would cause the reduction of the strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that A1203 nanoparticles could improve mechanical and physical properties of the concrete specimens.展开更多
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t...This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.展开更多
Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobili...Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.展开更多
Al nanoparticles(NPs)exhibit excellent localized surface plasmon resonance(LSPR)properties and have been considered a promising alternative to plasmonic Au or Ag NPs.However,it remains difficult to fabricate Al NPs wi...Al nanoparticles(NPs)exhibit excellent localized surface plasmon resonance(LSPR)properties and have been considered a promising alternative to plasmonic Au or Ag NPs.However,it remains difficult to fabricate Al NPs with uniform size and controllable morphology over a large area on substrates,which seriously hinders the in-depth exploration of their properties and applications.Herein,we have developed a self-assembly nanoparticle template method to realize the controllable preparation of bowl-shaped Al NPs(Al nanobowls(Al NBs))with tunable sizes from 36 to 131 nm on the substrate surface,accompanied by tunable LSPR spectral responses from 272 to 480 nm.Among them,131 nm Al NBs exhibit superior fluorescence enhancement ability(1932.2-fold)and a low detection limit(78.6 pM)towards 5-carboxyfluorescein,exceeding comparable Ag NBs and Au nanospheres(NSs).This can be attributed to the strong electromagnetic enhancement induced by the LSPR effect and the effective inhibition of fluorescence quenching caused by the self-passivated oxide layer.Therefore,the successful fabrication of Al NBs on substrates is of vital significance for their promising applications,including surface-enhanced spectroscopy,sensitive fluorescence detection,light-harvesting devices,biosensing,and ultraviolet(UV)plasmonics.展开更多
Nb_(3)Al nanoparticles were directly synthesized by metallothermic reduction process in the molten salts with mNbCl_(5)-nAlCl_(3) powders as raw materials and sodium as reducing reagent. The effects of different feedi...Nb_(3)Al nanoparticles were directly synthesized by metallothermic reduction process in the molten salts with mNbCl_(5)-nAlCl_(3) powders as raw materials and sodium as reducing reagent. The effects of different feeding material orders, soaking time, Nb content in raw materials, and 3NbCl_(5)-AlCl_(3) content in molten salts on the obtained Nb_(3)Al powder were discussed. The as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). It is found that the only phase Nb_(3)Al nanoparticles are obtained by controlling the variation of the feeding material orders, soaking time, and Nb content in raw materials. And the morphologies of as-prepared nanoparticles change owning to different 3NbCl_(5)-AlCl_(3) contents in molten salts.展开更多
Long-term excessive application of mineral fertilizer has led to soil acidification and phosphorus(P) accumulation, increasing the risk of P loss and environmental pollution, and cessation of fertilization is widely c...Long-term excessive application of mineral fertilizer has led to soil acidification and phosphorus(P) accumulation, increasing the risk of P loss and environmental pollution, and cessation of fertilization is widely considered as a cost-effective management strategy to relieve this situation;however, how such cessation influences P speciation and concentrations in a bulk soil and colloidal fractions and whether decreasing P concentration might maintain soil fertility remain unclear. In this study, the effects of long-term fertilization(ca. 40 years) and short-term cessation of fertilization(ca. 16 months) on inorganic, organic,and colloidal P in lime concretion black soil were investigated using P sequential fractionation and31P nuclear magnetic resonance spectroscopy. After long-term fertilization, available P, dicalcium phosphate, iron-bound P, orthophosphate monoesters, and orthophosphate diesters increased significantly, but soil p H decreased by ca. 2.8 units, indicating that long-term fertilization caused soil acidification and P accumulation and changed P speciation markedly. In contrast, short-term fertilization cessation increased soil p H by ca. 0.8 units and slightly reduced available and inorganic P. Available P after fertilization cessation was 22.9–29.8 mg kg-1, which was still sufficient to satisfy crop growth requirements. Additionally, fertilization cessation increased the proportions of fine colloids(100–450 nm, including nontronite and some amorphous iron oxides) and drove a significant release of iron/aluminum oxide nanoparticles(1–100 nm) and associated P with orthophosphate and pyrophosphate species. In summary, short-term fertilization cessation effectively alleviated soil acidification and inorganic P accumulation, while concomitantly maintaining soil P fertility and improving the potential mobilization of P associated with microparticles.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20476004 and No.2087005) and the National Basic Research Program of China (No.2004CB719505). Computational resources were supported by the "Chemical Grid Project" of Beijing University of Chemical Technology.
文摘Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specific heat capacity were calculated to estimate the melting temperatures. The melting point is 540+10 K for the icosahedral structure, 500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure. With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.
文摘The solar cell market is predominantly based on textured screen-printed solar cells.Due to parasitic absorption in nanostructures,using plasmonic processes to obtain an enhancement that exceeds 2.5%of the short-circuit photocurrent density is challenging.In this paper,a 7.2%enhancement in the photocurrent density can be achieved through the integration of plasmonic Al nanoparticles and wrinkle-like graphene sheets.For the first time,we experimentally achieve Al nanoparticle-enhanced solar cells.An innovative thermal evaporation method is proposed to fabricate low-coverage Al nanoparticle arrays on solar cells.Due to the ultraviolet(UV)plasmon resonance of Al nanoparticles,the performance enhancement of the solar cells is significantly greater than that from Ag nanoparticles.Subsequently,we deposit wrinkle-like graphene sheets over the Al nanoparticle-enhanced solar cells.Compared with planar graphene sheets,the bend carbon layer also exhibits a broadband light-trapping effect.Our results exceed the limit of plasmonic light trapping in textured screen-printed silicon solar cells.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
基金Project (10804101) supported by the National Natural Science Foundation of China
文摘Single-phase Ag2Al intermetallic nanoparticles, and Ag and Al metallic nanoparticles were synthesized by the flow-levitation (FL) method. Measurements of d-spacings from X-ray diffraction and electron diffraction confirmed that the intermetallic nanoparticles had the hexagonal Ag2Al structure. The morphology, crystal structure and chemical composition of Ag2Al nanoparticles were investigated by transmission electron microscopy, X-ray diffraction and induction-coupled plasma spectroscopy. A thin amorphous coating was formed around the particles when exposed to air. Based on the XPS measurements, the surface coating of the Ag2Al nanoparticles could most likely be aluminum oxide or silver aluminum oxide. Therefore, the single-phase nanocrystalline Ag2Al intermetallic compound particles can be produced by adjusting some experimental parameters in FL method.
文摘Grinding requires high specific energy which develops high temperatures at wheel work piece interface. High temperatures impair work piece quality by inducing tensile residual stress, burn, and micro cracks. Control of grinding temperature is achieved by providing effective cooling and lubrication. Conventional flood cooling is often ineffective due to enormous heat generation and improper heat dissipation. This paper deals with an investigation on using TRIM E709 emulsifier with Al_2O_3 nanoparticles to reduce the heat generated at grinding zone. An experimental setup has been developed for this and detailed comparison has been done with dry, TRIM E709 emulsifier and TRIM E709 emulsifier with Al_2O_3 nanoparticles in grinding EN-31 steel in terms of temperature distribution and surface finish. Results shows that surface roughness and heat penetration were decreased with addition of Al_2O_3 nanoparticles.
基金supported by Russian Science Foundation(Grant No.14-19-00632)
文摘The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings.
文摘In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag (GGBFS) and A1203 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of GGBFS and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, GGBFS was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. A1203 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of GGBFS and physical and mechanical properties of the specimens were measured. A1203 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increase of the A1203 nanoparticles' content by more than 3.0 wt% would cause the reduction of the strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that A1203 nanoparticles could improve mechanical and physical properties of the concrete specimens.
文摘This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.
基金supported by the Nature Science Foundation of Heilongjiang Province (No. B201410)the Postdoctoral Foundation Project of Heilongjiang Province (No. LBH-Z13128)+3 种基金the Science and Technology Research Program of Education Bureau of Heilongjiang Province (No. 12531206)the Special Scientific Research Projects of Harbin Normal University (12XQXG02)the National Nature Science Foundation of China (No. 41030743)the National Nature Science Foundation of China (No. 42171217)
文摘Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.
基金This work was supported by the National Natural Science Foundation of China(Nos.22072104 and 21822202)Suzhou Key Laboratory of Surface and Interface Intelligent Matter(No.SZS2022011)This is also a project funded by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Al nanoparticles(NPs)exhibit excellent localized surface plasmon resonance(LSPR)properties and have been considered a promising alternative to plasmonic Au or Ag NPs.However,it remains difficult to fabricate Al NPs with uniform size and controllable morphology over a large area on substrates,which seriously hinders the in-depth exploration of their properties and applications.Herein,we have developed a self-assembly nanoparticle template method to realize the controllable preparation of bowl-shaped Al NPs(Al nanobowls(Al NBs))with tunable sizes from 36 to 131 nm on the substrate surface,accompanied by tunable LSPR spectral responses from 272 to 480 nm.Among them,131 nm Al NBs exhibit superior fluorescence enhancement ability(1932.2-fold)and a low detection limit(78.6 pM)towards 5-carboxyfluorescein,exceeding comparable Ag NBs and Au nanospheres(NSs).This can be attributed to the strong electromagnetic enhancement induced by the LSPR effect and the effective inhibition of fluorescence quenching caused by the self-passivated oxide layer.Therefore,the successful fabrication of Al NBs on substrates is of vital significance for their promising applications,including surface-enhanced spectroscopy,sensitive fluorescence detection,light-harvesting devices,biosensing,and ultraviolet(UV)plasmonics.
基金the National Natural Science Foundation of China(Nos.50934001,21071014,51102015,and 51401004)the Fundamental Research Funds for the Central Universities(Nos.FRF-AS-11-002A,FRF-TP12-023A,and FRF-MP-09-006B)+2 种基金the National High Technology Research and Development Program of China(No.2012AA062302)the Program of the Co-Construction with Beijing Municipal Commission of Education of China(Nos.00012047 and 00012085)the Program for New Century Excellent Talents in University(No.NCET-11-0577)。
文摘Nb_(3)Al nanoparticles were directly synthesized by metallothermic reduction process in the molten salts with mNbCl_(5)-nAlCl_(3) powders as raw materials and sodium as reducing reagent. The effects of different feeding material orders, soaking time, Nb content in raw materials, and 3NbCl_(5)-AlCl_(3) content in molten salts on the obtained Nb_(3)Al powder were discussed. The as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). It is found that the only phase Nb_(3)Al nanoparticles are obtained by controlling the variation of the feeding material orders, soaking time, and Nb content in raw materials. And the morphologies of as-prepared nanoparticles change owning to different 3NbCl_(5)-AlCl_(3) contents in molten salts.
基金supported by the National Natural Science Foundation of China (No. 41907063)the Foundation of Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China (No. N2021-002)。
文摘Long-term excessive application of mineral fertilizer has led to soil acidification and phosphorus(P) accumulation, increasing the risk of P loss and environmental pollution, and cessation of fertilization is widely considered as a cost-effective management strategy to relieve this situation;however, how such cessation influences P speciation and concentrations in a bulk soil and colloidal fractions and whether decreasing P concentration might maintain soil fertility remain unclear. In this study, the effects of long-term fertilization(ca. 40 years) and short-term cessation of fertilization(ca. 16 months) on inorganic, organic,and colloidal P in lime concretion black soil were investigated using P sequential fractionation and31P nuclear magnetic resonance spectroscopy. After long-term fertilization, available P, dicalcium phosphate, iron-bound P, orthophosphate monoesters, and orthophosphate diesters increased significantly, but soil p H decreased by ca. 2.8 units, indicating that long-term fertilization caused soil acidification and P accumulation and changed P speciation markedly. In contrast, short-term fertilization cessation increased soil p H by ca. 0.8 units and slightly reduced available and inorganic P. Available P after fertilization cessation was 22.9–29.8 mg kg-1, which was still sufficient to satisfy crop growth requirements. Additionally, fertilization cessation increased the proportions of fine colloids(100–450 nm, including nontronite and some amorphous iron oxides) and drove a significant release of iron/aluminum oxide nanoparticles(1–100 nm) and associated P with orthophosphate and pyrophosphate species. In summary, short-term fertilization cessation effectively alleviated soil acidification and inorganic P accumulation, while concomitantly maintaining soil P fertility and improving the potential mobilization of P associated with microparticles.
基金supported by the National Key Research and Development Programme of China(2022YFA1404704 and 2020YFA0406104)the National Natural Science Foundation of China(52002168,12022403,11874211,62134009,62121005,and 61735008)+2 种基金Excellent Research Programme of Nanjing University(ZYJH005)the Fundamental Research Funds for the Central Universities(021314380184,021314380208,021314380190,021314380140,and 021314380150)State Key Laboratory of New Textile Materials and Advanced Processing Technologies(Wuhan Textile University,No.FZ2022011).