ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
In this study, 2% Fe and 3% Al co-doped ZnO nanoparticles were synthesized using a hydrothermal method under high magnetic field (HMF). The influences of HMF on the structural, optical, and ferromagnetic properties of...In this study, 2% Fe and 3% Al co-doped ZnO nanoparticles were synthesized using a hydrothermal method under high magnetic field (HMF). The influences of HMF on the structural, optical, and ferromagnetic properties of Fe and Al co-doped ZnO nanoparticles were characterized and analyzed. The single-phase wurtzite structure of the synthesized samples was confirmed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy analysis. The application of HMF decreases the particle size of the spherical nanocrystal as observed by scanning electron microscopy (SEM). Optical analysis indicated that the absoqjtion edge shifted towards a higher wavelength (red shift). The nanoparticles synthesized under the HMF exhibited high room temperature ferromagnetism (RTFM) performance because of the high oxygen vacancy (VO) content as revealed by X-ray photoelectron spectroscopy (XPS), which was in agreement with the prediction of the bound magnetic polarons theory.展开更多
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
基金the National Natural Science Foundation of China (Grant No. 51572166)The authors also express gratitude to the Analysis and Research Center of Shanghai University for their valuable Technical Support. Wen-Xian Li also acknowledges research sponsored by the Program for Professor of Special Appointment (Eastern Scholar: TP2014041) at Shanghai Institutions of Higher Learning.
文摘In this study, 2% Fe and 3% Al co-doped ZnO nanoparticles were synthesized using a hydrothermal method under high magnetic field (HMF). The influences of HMF on the structural, optical, and ferromagnetic properties of Fe and Al co-doped ZnO nanoparticles were characterized and analyzed. The single-phase wurtzite structure of the synthesized samples was confirmed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy analysis. The application of HMF decreases the particle size of the spherical nanocrystal as observed by scanning electron microscopy (SEM). Optical analysis indicated that the absoqjtion edge shifted towards a higher wavelength (red shift). The nanoparticles synthesized under the HMF exhibited high room temperature ferromagnetism (RTFM) performance because of the high oxygen vacancy (VO) content as revealed by X-ray photoelectron spectroscopy (XPS), which was in agreement with the prediction of the bound magnetic polarons theory.