Tungsten-doped silver films were prepared by immersing hydrogen-terminated silicon wafers into the solution of 2.5 mmol/L[Ag2WO4]+0.1 mol/L HF at 50℃.Their growth and composition were characterized with atomic force ...Tungsten-doped silver films were prepared by immersing hydrogen-terminated silicon wafers into the solution of 2.5 mmol/L[Ag2WO4]+0.1 mol/L HF at 50℃.Their growth and composition were characterized with atomic force microscopy and X-ray photoelectron spectroscopy,respectively.The effect of tungstate ions on the deposition of silver was investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)by comparing W-doped Ag film with Ag film.It is found that the molar fraction of tungsten in the deposits is about 2.3%and the O to W molar ratio was about 4.0 and W-doped Ag films have good anti-corrosion in air at 350℃.The doping of tungsten cannot change the deposition of silver.展开更多
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
The samples consisting of 100nm Al or Ag film on optical glass substrate were irradiated by a beam of Xe 5×10<sup>15</sup> to 2×10<sup>16</sup> cm<sup>-2</sup> with energy...The samples consisting of 100nm Al or Ag film on optical glass substrate were irradiated by a beam of Xe 5×10<sup>15</sup> to 2×10<sup>16</sup> cm<sup>-2</sup> with energy 320 keV. The adhesion of films on substrates was tested by Xe<sup>+</sup> irradiation. Optical character was measured by spectrophotometer. The ion mixing amount was measured by RBS. The results showed that after ion irradiating the adhesion of the film on the glass is enhanced. The adherent strength is greater than 10 kg/cm<sup>2</sup>. The thermal stability of the films is good. The irradiated film is more optically efficient, the surface is smooth and rendered more corrosion resistance. The mechanism of the film adhesion was discussed.展开更多
We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structu...We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.展开更多
Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target mate...Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target materials were fabricated by sintering in air, and ZAO transparent conductive films were prepared by RF magnetron sputtering on glass substrates. XRD proved that such films had an orientation of (002) crystal panel paralleled to the surface of the glass substrate. The average transmittance of the films in the visible region exceeded 80%.展开更多
A new sol-gel process is applied to fabricate the BST (BaxSr1-xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder an...A new sol-gel process is applied to fabricate the BST (BaxSr1-xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder and thick film are characterized by X-ray diffraction and transmission electron microscope. The influence of La-Mn-Al co-doping on the dielectric properties and micro-structure of BST thick film is analyzed. The results show that the La, Mn, and Al ions can take an obvious restraint on the growth of BaSrTiO3 grains. The polycrystalline particles come into being during the crystallization of thick film, which may improve the uniformity and compactness of thick film. The influence of unequal-valence and doping amount on the leakage current, dielectric loss, and dielectric property are mainly discussed. The dielectric constant and dielectric loss of thick film are 1200 and 0.03, respectively, in the case of 1mol% La doping, 2mol% Mn doping, and 1mol% Al doping.展开更多
基金Projects(5072106250835009)supported by the National Natural Science Foundation of China
文摘Tungsten-doped silver films were prepared by immersing hydrogen-terminated silicon wafers into the solution of 2.5 mmol/L[Ag2WO4]+0.1 mol/L HF at 50℃.Their growth and composition were characterized with atomic force microscopy and X-ray photoelectron spectroscopy,respectively.The effect of tungstate ions on the deposition of silver was investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)by comparing W-doped Ag film with Ag film.It is found that the molar fraction of tungsten in the deposits is about 2.3%and the O to W molar ratio was about 4.0 and W-doped Ag films have good anti-corrosion in air at 350℃.The doping of tungsten cannot change the deposition of silver.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
文摘The samples consisting of 100nm Al or Ag film on optical glass substrate were irradiated by a beam of Xe 5×10<sup>15</sup> to 2×10<sup>16</sup> cm<sup>-2</sup> with energy 320 keV. The adhesion of films on substrates was tested by Xe<sup>+</sup> irradiation. Optical character was measured by spectrophotometer. The ion mixing amount was measured by RBS. The results showed that after ion irradiating the adhesion of the film on the glass is enhanced. The adherent strength is greater than 10 kg/cm<sup>2</sup>. The thermal stability of the films is good. The irradiated film is more optically efficient, the surface is smooth and rendered more corrosion resistance. The mechanism of the film adhesion was discussed.
基金the National Natural Science Foundation of China(Grant No.60977028)the Key Project Foundation of Shanghai,China(Grant No.09JC1413800)
文摘We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.
文摘Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target materials were fabricated by sintering in air, and ZAO transparent conductive films were prepared by RF magnetron sputtering on glass substrates. XRD proved that such films had an orientation of (002) crystal panel paralleled to the surface of the glass substrate. The average transmittance of the films in the visible region exceeded 80%.
基金supported by the National High Technology Research and Development Program of China under Grant No2007AA032120the National Natural Science Foundation of China under Grant No 60777043
文摘A new sol-gel process is applied to fabricate the BST (BaxSr1-xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder and thick film are characterized by X-ray diffraction and transmission electron microscope. The influence of La-Mn-Al co-doping on the dielectric properties and micro-structure of BST thick film is analyzed. The results show that the La, Mn, and Al ions can take an obvious restraint on the growth of BaSrTiO3 grains. The polycrystalline particles come into being during the crystallization of thick film, which may improve the uniformity and compactness of thick film. The influence of unequal-valence and doping amount on the leakage current, dielectric loss, and dielectric property are mainly discussed. The dielectric constant and dielectric loss of thick film are 1200 and 0.03, respectively, in the case of 1mol% La doping, 2mol% Mn doping, and 1mol% Al doping.