B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,i...B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites.展开更多
B4C reinforced Al composites are widely used as neutron absorbing materials(NAMs)due to excellent neutron absorbing efficiency,however,such NAMs exhibit poor high-temperature properties.To meet the requirement for str...B4C reinforced Al composites are widely used as neutron absorbing materials(NAMs)due to excellent neutron absorbing efficiency,however,such NAMs exhibit poor high-temperature properties.To meet the requirement for structure-function integration,NAMs with enhanced high-temperature mechanical properties are desired.In this work,a novel(B4 C+Al_(2)O_(3))/Al NAM with netlike distribution of Al_(2)O_(3)was fabricated by powder metallurgy method and subjected to high-temperature tensile creep test.It was shown that the creep resistance was enhanced by several orders of magnitude via the addition of only2.1 vol.%netlike-distributed Al_(2)O_(3).(B_(4)C+Al_(2)O_(3))/Al exhibited high apparent stress exponents ranging from 16 to 25 and high apparent activation energy of 364 kJ/mol.The creep behaviour could be rationalized using the substructure-invariant model and its rupture behaviour could be described by the Dobes-Milicka equation.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFB3710601)the National Natural Science Foundation of China(Grant Nos.52203385 and 52171056)+2 种基金the CNNC Science Fund for Talented Young Scholars,the Institute of Metal Research(IMR)Innovation Fund(Grant No.2021-ZD02)the Natural Science Foundation of Liaoning Province(Grant No.2022-BS-009)Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20220225).
文摘B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites.
基金financially supported by the National Natural Science Foundation of China(No.51771194)the CNNC Science Fund for Talented Young Scholars,the LingChuang Research Project of China National Nuclear Corporation,the LiaoNing Revitalization Talents Program(No.XLYC1902058)the IMR Innovation Fund(Nos.2021-ZD02 and 2021-PY12)。
文摘B4C reinforced Al composites are widely used as neutron absorbing materials(NAMs)due to excellent neutron absorbing efficiency,however,such NAMs exhibit poor high-temperature properties.To meet the requirement for structure-function integration,NAMs with enhanced high-temperature mechanical properties are desired.In this work,a novel(B4 C+Al_(2)O_(3))/Al NAM with netlike distribution of Al_(2)O_(3)was fabricated by powder metallurgy method and subjected to high-temperature tensile creep test.It was shown that the creep resistance was enhanced by several orders of magnitude via the addition of only2.1 vol.%netlike-distributed Al_(2)O_(3).(B_(4)C+Al_(2)O_(3))/Al exhibited high apparent stress exponents ranging from 16 to 25 and high apparent activation energy of 364 kJ/mol.The creep behaviour could be rationalized using the substructure-invariant model and its rupture behaviour could be described by the Dobes-Milicka equation.