Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as...Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.展开更多
The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperature...The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperatures. Apart from the Al2O3 scale formed on the surface, the microstructure of the composite coatings exposed at 900℃ in air for 4h was a three-layer structure. The first layer consisted of a solid solution of Cr and Fe in α aluminum and an intermetallic compound FeAl3 while the second layer was a single phase of the aluminide and the third layer still remained the same appearance as the original Fe-Cr-Al coating. The microstructural observation of the specimen tested at 850-900℃ at low oxygen pressure and high sulfur pressure for 576h revealed that the surface coatings of the specimen had transformed into a duplex structure containing an outer layer and a thicker aluminide layer beneath. X-ray diffraction results showed that the out layer was composed of Al2S3 and Al2O3 and that AlCrFee was the main phase composition of the aluminide layer, with a few of Al2S3 and Al2O3 accompanied.展开更多
The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influenc...The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.展开更多
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser...To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.展开更多
The Fe-Al/WC intermetallic composite coatings have been prepared by high velocity arc spraying(HVAS) technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings has been studied by means of th...The Fe-Al/WC intermetallic composite coatings have been prepared by high velocity arc spraying(HVAS) technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings has been studied by means of thermogrativmetic analyzer. The results demonstrate that the kinetics curve of oxidation approximately follows the logarithmic law. The composition of the oxidized coating surface mainly is composed of A12O3, Fe2O3, Fe3O4 and FeO which distribute unevenly. The protective A12O3 film firstly forms and preserves the coatings from further oxidation.展开更多
Fe-Al/Cr3C2 composite coatings were manufactured using high velocity arc spraying (HVAS) technology. The high temperature erosion, wear and corrosion resistance of the coatings were investigated. The coating propert...Fe-Al/Cr3C2 composite coatings were manufactured using high velocity arc spraying (HVAS) technology. The high temperature erosion, wear and corrosion resistance of the coatings were investigated. The coating properties such as bonding strength, porosity, hardness as well as microstructures were characterized. The results show that the coatings have relatively high heat tremble bond strength, hardness, and typical layer-shaped coatings' microstructures. With the rise of temperature, the coating erosion resistance increases too; the impingement angel does effects on erosion properties, and the erosion mechanism changes from ductile to brittle behaviors at 450℃. The coatings have good room temperature wear resistance and relatively good high temperature resistance. The wear mechanism of the coatings is peeling wear behavior. The coatings have excellent high temperature corrosion resistance because of the produce of oxides during corrosion.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room t...Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.展开更多
The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting s...The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.展开更多
The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500...The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃展开更多
Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried...Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.展开更多
To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composi...To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.展开更多
A Si-Al-lr oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-lr coating were st...A Si-Al-lr oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-lr coating were studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), and isothermal oxidation test at 1773 K in air, respectively. The surface of the as-prepared Si-Al-lr coating was dense and the thickness was approximately 100 um. Its anti-oxidation property was superior to that of the inner SiC coating. The weight loss of SiC/Si- Al-lr coated carbon/carbon composites was less than 5 wt. pct after oxidation at 1773 K in air for 79 h. The local oxidation defects in the coating may result in the failure of the SiC/Si-Al-Ir coating.展开更多
TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3-1 when the spraying distance,gas temperatu...TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3-1 when the spraying distance,gas temperature and gas pressure for the process were 10 mm,250 ℃ and 1.8 MPa,respectively.The as-sprayed coating was then subjected to heat treatment at 630 ℃ in argon atmosphere for 5 h at a heating rate of 3 ℃/min and an argon gas flow rate of 40 mL/min.The obtained TiAl3-Al composite coating is about 212 μm with a density of 3.16 g/cm3 and a porosity of 14.69% in general.The microhardness and bonding strength for the composite coating are HV525 and 27.12 MPa.展开更多
By means of an inherent elevated-temperature of poured liquid steel,a Ti-C-30wt%Fe preform,which was pre-placed in a mould cavity,was directly ignited and a combustion synthesis reaction took place.As a result,a TiC-F...By means of an inherent elevated-temperature of poured liquid steel,a Ti-C-30wt%Fe preform,which was pre-placed in a mould cavity,was directly ignited and a combustion synthesis reaction took place.As a result,a TiC-Fe cermet coating with a thickness of about 10mm was simultaneously synthesized on the solidified steel matrix.The synthesized coating exhibits a feature of graded composite structure,in which both the amount and size of TiC particles decrease gradually with an increasing distance from the furface of the coating.Moreover,by a proper casting technique,the pores formed during the combustion synthesis of the preform could be centrally distributed in 2-3mm in outer layer of the coating.When this outer porous layer was worn off,the rest coating with a thickness of about 8mm possesses a dense structure and a high abrasive wear resistance.展开更多
A new hardfacing process, reactive braze coating process (RBCC) was studied, and (TiC+Cr_3C_2)/Fe composite coatings were prepared by RBCC using carbon, Cr_3C_2, iron, ferrochromium and titanium powder as the raw mate...A new hardfacing process, reactive braze coating process (RBCC) was studied, and (TiC+Cr_3C_2)/Fe composite coatings were prepared by RBCC using carbon, Cr_3C_2, iron, ferrochromium and titanium powder as the raw materials in vacuum braze furnace. The results show that TiC is in-situ synthesized in the coatings. The methods of introducing Cr_3C_2 have great effects on the distribution of TiC. Adding Cr_3C_2 directly to the raw materials for coatings, fine TiC particles aggregate into discoids parallel to the coating surface, whereas, in-situ synthesizing Cr_3C_2 in coatings, the aggregations of TiC are lumpish. During braze coating, Cr_3C_2 particles directly added dissolve and precipitate to become needle-shaped. The coatings have an even and smooth surface and are combined with their mild steel substrates by a metallurgical bonding.展开更多
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemica...Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.展开更多
The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning elect...The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.展开更多
The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning elect...The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [展开更多
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China
文摘Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.
文摘The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperatures. Apart from the Al2O3 scale formed on the surface, the microstructure of the composite coatings exposed at 900℃ in air for 4h was a three-layer structure. The first layer consisted of a solid solution of Cr and Fe in α aluminum and an intermetallic compound FeAl3 while the second layer was a single phase of the aluminide and the third layer still remained the same appearance as the original Fe-Cr-Al coating. The microstructural observation of the specimen tested at 850-900℃ at low oxygen pressure and high sulfur pressure for 576h revealed that the surface coatings of the specimen had transformed into a duplex structure containing an outer layer and a thicker aluminide layer beneath. X-ray diffraction results showed that the out layer was composed of Al2S3 and Al2O3 and that AlCrFee was the main phase composition of the aluminide layer, with a few of Al2S3 and Al2O3 accompanied.
基金Item Sponsored by Provincial Natural Science Foundation of Jiangsu of China(BK2000012)
文摘The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.
基金Projects(51471084,61475117)supported by the National Natural Science Foundation of ChinaProject(13ZCZDGX01109)supported by Tianjin Municipal Science and Technology Commission of ChinaProject(20122BBE500031)supported by the Key Technology Project of Jiangxi Province in China
文摘To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.
基金supports for this work by the National Natural Science Foundation of China(Project No.50235030)Foundation of state economy trade committee of China are grateful acknowledged.
文摘The Fe-Al/WC intermetallic composite coatings have been prepared by high velocity arc spraying(HVAS) technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings has been studied by means of thermogrativmetic analyzer. The results demonstrate that the kinetics curve of oxidation approximately follows the logarithmic law. The composition of the oxidized coating surface mainly is composed of A12O3, Fe2O3, Fe3O4 and FeO which distribute unevenly. The protective A12O3 film firstly forms and preserves the coatings from further oxidation.
文摘Fe-Al/Cr3C2 composite coatings were manufactured using high velocity arc spraying (HVAS) technology. The high temperature erosion, wear and corrosion resistance of the coatings were investigated. The coating properties such as bonding strength, porosity, hardness as well as microstructures were characterized. The results show that the coatings have relatively high heat tremble bond strength, hardness, and typical layer-shaped coatings' microstructures. With the rise of temperature, the coating erosion resistance increases too; the impingement angel does effects on erosion properties, and the erosion mechanism changes from ductile to brittle behaviors at 450℃. The coatings have good room temperature wear resistance and relatively good high temperature resistance. The wear mechanism of the coatings is peeling wear behavior. The coatings have excellent high temperature corrosion resistance because of the produce of oxides during corrosion.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
文摘Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.
基金Projects(51572112,51401034)supported by the National Natural Science Foundation of ChinaProject(BK20151340)supported by the Natural Science Foundation of Jiangsu Province,China+3 种基金Projects(2014-XCL-002,TD-XCL-004)supported by the Six Talent Peaks Project of Jiangsu Province,ChinaProject(BRA2017387)supported by the 333 Talents Project of Jiangsu Province,ChinaProject([2015]26)supported by the Innovation/Entrepreneurship Program of Jiangsu Province,ChinaProject([2016]15)supported by the Qing Lan Project,China
文摘The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.
文摘The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃
基金This research was supported by Jilin Province Science Foundation (No. 20090552).
文摘Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.
基金Funded by the national Natural Science Foundation of China (No. 51075293)the Foundation for Development of Science and Technology of Taiyuan University of Technology,China(No.K201014)
文摘To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.
基金supported by the National "973"Project under grant No. 2006CB600908
文摘A Si-Al-lr oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-lr coating were studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), and isothermal oxidation test at 1773 K in air, respectively. The surface of the as-prepared Si-Al-lr coating was dense and the thickness was approximately 100 um. Its anti-oxidation property was superior to that of the inner SiC coating. The weight loss of SiC/Si- Al-lr coated carbon/carbon composites was less than 5 wt. pct after oxidation at 1773 K in air for 79 h. The local oxidation defects in the coating may result in the failure of the SiC/Si-Al-Ir coating.
文摘TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3-1 when the spraying distance,gas temperature and gas pressure for the process were 10 mm,250 ℃ and 1.8 MPa,respectively.The as-sprayed coating was then subjected to heat treatment at 630 ℃ in argon atmosphere for 5 h at a heating rate of 3 ℃/min and an argon gas flow rate of 40 mL/min.The obtained TiAl3-Al composite coating is about 212 μm with a density of 3.16 g/cm3 and a porosity of 14.69% in general.The microhardness and bonding strength for the composite coating are HV525 and 27.12 MPa.
基金FinanciallysupportedbytheNationalNaturalScienceFoundationofChina (No .5 0 2 76 0 2 3)
文摘By means of an inherent elevated-temperature of poured liquid steel,a Ti-C-30wt%Fe preform,which was pre-placed in a mould cavity,was directly ignited and a combustion synthesis reaction took place.As a result,a TiC-Fe cermet coating with a thickness of about 10mm was simultaneously synthesized on the solidified steel matrix.The synthesized coating exhibits a feature of graded composite structure,in which both the amount and size of TiC particles decrease gradually with an increasing distance from the furface of the coating.Moreover,by a proper casting technique,the pores formed during the combustion synthesis of the preform could be centrally distributed in 2-3mm in outer layer of the coating.When this outer porous layer was worn off,the rest coating with a thickness of about 8mm possesses a dense structure and a high abrasive wear resistance.
文摘A new hardfacing process, reactive braze coating process (RBCC) was studied, and (TiC+Cr_3C_2)/Fe composite coatings were prepared by RBCC using carbon, Cr_3C_2, iron, ferrochromium and titanium powder as the raw materials in vacuum braze furnace. The results show that TiC is in-situ synthesized in the coatings. The methods of introducing Cr_3C_2 have great effects on the distribution of TiC. Adding Cr_3C_2 directly to the raw materials for coatings, fine TiC particles aggregate into discoids parallel to the coating surface, whereas, in-situ synthesizing Cr_3C_2 in coatings, the aggregations of TiC are lumpish. During braze coating, Cr_3C_2 particles directly added dissolve and precipitate to become needle-shaped. The coatings have an even and smooth surface and are combined with their mild steel substrates by a metallurgical bonding.
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of China+2 种基金Project(CX2009B032) supported by Innovation Foundation for Postgraduate of Hunan Province of China Project(ZKJ2009024) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaProject(2009ybfz02) supported by Excellent Doctor Support Fund of Central South University,China
文摘Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.
文摘The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.
文摘The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.