The interface structure and electronic properties of Fe(110)/Al(110) are investigated by the first-principles plane-wave pseudopotential method. The interface segregation position of Si and Mg is determined, and the e...The interface structure and electronic properties of Fe(110)/Al(110) are investigated by the first-principles plane-wave pseudopotential method. The interface segregation position of Si and Mg is determined, and the effect of Mg and Si on the interface binding of Fe(110)/Al(110) is analyzed by combining the work of separation and charge density. The results show that the Fe(110)/Al(110) interface energy of FeHollow coordination is smaller and the interface structure is more stable. The Fe(110)/Al(110) interface separation surface in the form of Fe-Hollow coordination appears at the sub interface layer on the side of Al(110)near the interface. The interface structure of Mg and Si segregation is similar to that of undoped alloy elements.The calculations also suggest that Mg and Si segregate on the Al(110) side of the interface and occupy the Al lattice on the Al(110) side. The segregation of Mg and Si elements will reduce the interface binding, primarily because the Fe-Si bond and Fe-Mg bond are weaker than Fe-Al bond.展开更多
A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes p...A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.展开更多
Phase structure characteristics near the interface of Fe3Al/Q235 diffusion bonding are investigated by means of X raydiffraction (XRD), transmission electronic microscope (TEM) and electron diffraction, etc. The test ...Phase structure characteristics near the interface of Fe3Al/Q235 diffusion bonding are investigated by means of X raydiffraction (XRD), transmission electronic microscope (TEM) and electron diffraction, etc. The test results indicatedthat obviously a diffusion transition zone forms near the interface of Fe3Al/Q235 under the condition of heatingtemperature 1050~1100℃, holding time 60 min and pressure 9.8 MPa, which indicated that the diffusion interfaceof Fe3Al/Q235 was combined well. The diffusion transition zone consisted of Fe3Al and a-Fe(Al) solid solution.Microhardness near the diffusion transition zone was HM 480~540. There was not brittle phase of high hardness inthe interface transition zone. This is favorable to enhance toughness of Fe3Al/Q235 diffusion joint.展开更多
Fe3Al and Crl8-Ni8 steel were bonded in vacuum and an interface was formed between Fe3Al and Crl8-Ni8 steel. Stress distribution at the diffusion-bonded interface was researched by numerical simulation and finite elem...Fe3Al and Crl8-Ni8 steel were bonded in vacuum and an interface was formed between Fe3Al and Crl8-Ni8 steel. Stress distribution at the diffusion-bonded interface was researched by numerical simulation and finite element method (FEM). The results indicated that the peak stress appeared at the interface near Cr18-Ni8 steel side. This is the key factor to induce crack at this position. With the enhancement of heating temperature, the peak stress at the bonded interface increases. When the temperature is 1 100 22, the peak stress is up to 65.9 MPa, which is bigger than that at 1 000 22 by 9. 4%. In addition, the peak stress becomes bigger with the increase of the thickness of base metal from 1 mm to 8 ram. While the thickness is more than 8 ram, the peak stress varies slightly with the change of the thickness.展开更多
The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy ...The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20 Sn bonding plate quantitatively. The effect of ratio of Fe-Al compound at interface on interacial shear strength was investigated perfectly. The results show that the relationship between ratio of Fe-Al compound at interace and interfacial shear strength is S = 3.3 + 1.91 t - 0.0135t^2 ( where t is ratio of Fe-Al compound at in- terface and S is interfacial shear strength ). When the ratio of Fe-Al compound at interface is 71%, the largest interfacial shear strength 70.9 MPa is got. This reasonable ratio of Fe-Al compound at interface is a quarttitative criterion of interfacial embrittlement. When the ratio of Fe-Al compound at interface is higher than 71% , interfacial embrittlement will occur.展开更多
Analysis electron microtechnique (AEM) and high resolution electron microtechnique (HREM) studies were conducted on a spray deposition Al 8.5Fe 1.3V 1.7Si(mass fraction, %) alloy to determine the characteristics of th...Analysis electron microtechnique (AEM) and high resolution electron microtechnique (HREM) studies were conducted on a spray deposition Al 8.5Fe 1.3V 1.7Si(mass fraction, %) alloy to determine the characteristics of the intermetallic phases. The results show that the striking characteristics of the microstructures in as deposited and as extruded alloys indicate the presence of a large amounts of homogeneously distributed fine particles and a few coarse particles, while small amount of eutectics consisted of α (Al) and α AlFeSi are found in local zone in as deposited alloy. The fine particle is identified to be bcc α AlFeSi phase, and the coarse particles are monoclinic α Al 13 Fe 4 equilibrium phase, bcc α AlFeSi phase and newly found hexagonal h AlFeSi metastable phase. In α Al 13 Fe 4 , stacking faults on (100) and (001) plane and microtwin on (100) twinning plane are frequently observed. The extra reflection spots in α AlFeSi reflection pattern can be induced by α AlFeSi superstructure. The hexagonal metastable phase transforms to bcc phase, and the compositions of two phases are very similar. A close crystallographic orientation relationship between hexagonal and bcc phases are determined, and HREM image shows that the interface between them is coherent. [展开更多
The 3D morphologies and growth mechanisms of proeutectic FeAl_(3) at the Al/Fe interface under different cooling rates were studied by synchrotron X-ray tomography.With increasing cooling rate,FeAl_(3) crystals develo...The 3D morphologies and growth mechanisms of proeutectic FeAl_(3) at the Al/Fe interface under different cooling rates were studied by synchrotron X-ray tomography.With increasing cooling rate,FeAl_(3) crystals developed from faceted polygonal prism,plates with flat surface,thin ribbon-like with periodic undulating surface to non-faceted rods with radial dendrites in cross section,indicating a gradual interface growth mode transition from two-dimensional layer growth to continuous growth.At a higher cooling rate,twinning mechanism plays a leading role in the formation and growth of FeAl_(3).A link between the morphologies,twinning and crystallographic structure was established based on quantitative analyses on the 3D structures.展开更多
基金the National Natural Science Foundation of China(No.51871030)the Higher Education Science Foundation of Jiangsu Province of China (No.17KJA430006)。
文摘The interface structure and electronic properties of Fe(110)/Al(110) are investigated by the first-principles plane-wave pseudopotential method. The interface segregation position of Si and Mg is determined, and the effect of Mg and Si on the interface binding of Fe(110)/Al(110) is analyzed by combining the work of separation and charge density. The results show that the Fe(110)/Al(110) interface energy of FeHollow coordination is smaller and the interface structure is more stable. The Fe(110)/Al(110) interface separation surface in the form of Fe-Hollow coordination appears at the sub interface layer on the side of Al(110)near the interface. The interface structure of Mg and Si segregation is similar to that of undoped alloy elements.The calculations also suggest that Mg and Si segregate on the Al(110) side of the interface and occupy the Al lattice on the Al(110) side. The segregation of Mg and Si elements will reduce the interface binding, primarily because the Fe-Si bond and Fe-Mg bond are weaker than Fe-Al bond.
基金Project(BA2006067)supported by Achievement Transitional Foundation of Jiangsu Province,China
文摘A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.
基金The work was supported by the Visiting Scholar Foundation of National Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, People's Republic of China.
文摘Phase structure characteristics near the interface of Fe3Al/Q235 diffusion bonding are investigated by means of X raydiffraction (XRD), transmission electronic microscope (TEM) and electron diffraction, etc. The test results indicatedthat obviously a diffusion transition zone forms near the interface of Fe3Al/Q235 under the condition of heatingtemperature 1050~1100℃, holding time 60 min and pressure 9.8 MPa, which indicated that the diffusion interfaceof Fe3Al/Q235 was combined well. The diffusion transition zone consisted of Fe3Al and a-Fe(Al) solid solution.Microhardness near the diffusion transition zone was HM 480~540. There was not brittle phase of high hardness inthe interface transition zone. This is favorable to enhance toughness of Fe3Al/Q235 diffusion joint.
基金the Doctoral Foundation of Shandong Province (2006BS04004)National Natural Science Foundation of China (50375088)
文摘Fe3Al and Crl8-Ni8 steel were bonded in vacuum and an interface was formed between Fe3Al and Crl8-Ni8 steel. Stress distribution at the diffusion-bonded interface was researched by numerical simulation and finite element method (FEM). The results indicated that the peak stress appeared at the interface near Cr18-Ni8 steel side. This is the key factor to induce crack at this position. With the enhancement of heating temperature, the peak stress at the bonded interface increases. When the temperature is 1 100 22, the peak stress is up to 65.9 MPa, which is bigger than that at 1 000 22 by 9. 4%. In addition, the peak stress becomes bigger with the increase of the thickness of base metal from 1 mm to 8 ram. While the thickness is more than 8 ram, the peak stress varies slightly with the change of the thickness.
基金Funded by the National Natural Science Foundation of China(No.50274047 and 50304001) ,BeijingJiaotong University Founda-tion and the Foundation of the Ministry of Education of China ,andthe National Science Foundation of Beijing
文摘The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20 Sn bonding plate quantitatively. The effect of ratio of Fe-Al compound at interface on interacial shear strength was investigated perfectly. The results show that the relationship between ratio of Fe-Al compound at interace and interfacial shear strength is S = 3.3 + 1.91 t - 0.0135t^2 ( where t is ratio of Fe-Al compound at in- terface and S is interfacial shear strength ). When the ratio of Fe-Al compound at interface is 71%, the largest interfacial shear strength 70.9 MPa is got. This reasonable ratio of Fe-Al compound at interface is a quarttitative criterion of interfacial embrittlement. When the ratio of Fe-Al compound at interface is higher than 71% , interfacial embrittlement will occur.
文摘Analysis electron microtechnique (AEM) and high resolution electron microtechnique (HREM) studies were conducted on a spray deposition Al 8.5Fe 1.3V 1.7Si(mass fraction, %) alloy to determine the characteristics of the intermetallic phases. The results show that the striking characteristics of the microstructures in as deposited and as extruded alloys indicate the presence of a large amounts of homogeneously distributed fine particles and a few coarse particles, while small amount of eutectics consisted of α (Al) and α AlFeSi are found in local zone in as deposited alloy. The fine particle is identified to be bcc α AlFeSi phase, and the coarse particles are monoclinic α Al 13 Fe 4 equilibrium phase, bcc α AlFeSi phase and newly found hexagonal h AlFeSi metastable phase. In α Al 13 Fe 4 , stacking faults on (100) and (001) plane and microtwin on (100) twinning plane are frequently observed. The extra reflection spots in α AlFeSi reflection pattern can be induced by α AlFeSi superstructure. The hexagonal metastable phase transforms to bcc phase, and the compositions of two phases are very similar. A close crystallographic orientation relationship between hexagonal and bcc phases are determined, and HREM image shows that the interface between them is coherent. [
基金supported by the National Natural Science Foundation of China-Excellent Young Scholars(No.51922068)National Natural Science Foundation of China(Nos.51821001,51904186,and 51904187)。
文摘The 3D morphologies and growth mechanisms of proeutectic FeAl_(3) at the Al/Fe interface under different cooling rates were studied by synchrotron X-ray tomography.With increasing cooling rate,FeAl_(3) crystals developed from faceted polygonal prism,plates with flat surface,thin ribbon-like with periodic undulating surface to non-faceted rods with radial dendrites in cross section,indicating a gradual interface growth mode transition from two-dimensional layer growth to continuous growth.At a higher cooling rate,twinning mechanism plays a leading role in the formation and growth of FeAl_(3).A link between the morphologies,twinning and crystallographic structure was established based on quantitative analyses on the 3D structures.