Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant res...Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant respectively. Resistivity beyond 100 Ωcm for undoped layer was decreased with increasing supply of the dopant and dependent on the supply ratio of O2 to TTIP and decreased to 0.2 Ωcm by the optimization. X-ray fluorescent spectroscopy showed Nb-content in the layer was decreased with the O2-supply ratio. X-ray photo-spectroscopy indicated that F substituted O-site in TiO2 by O2-supply but carbon-contamination and F missing substitution in the O-site were significantly increased by excess O2-supply. Further, it was suggested that the substituted F played an important role to reduce resistivity without significant contribution of O-vacancies. XRD spectra showed F missing substitution in the O-site degraded the crystallinity.展开更多
文摘Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant respectively. Resistivity beyond 100 Ωcm for undoped layer was decreased with increasing supply of the dopant and dependent on the supply ratio of O2 to TTIP and decreased to 0.2 Ωcm by the optimization. X-ray fluorescent spectroscopy showed Nb-content in the layer was decreased with the O2-supply ratio. X-ray photo-spectroscopy indicated that F substituted O-site in TiO2 by O2-supply but carbon-contamination and F missing substitution in the O-site were significantly increased by excess O2-supply. Further, it was suggested that the substituted F played an important role to reduce resistivity without significant contribution of O-vacancies. XRD spectra showed F missing substitution in the O-site degraded the crystallinity.