The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 part...The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.展开更多
Ni/ZrO2 catalysts were prepared by the incipient-wetness impregnation method and were investigated in activity and selectivity for the selective catalytic methanation of CO in hydrogen-rich gases with more than 20 vol...Ni/ZrO2 catalysts were prepared by the incipient-wetness impregnation method and were investigated in activity and selectivity for the selective catalytic methanation of CO in hydrogen-rich gases with more than 20 vol% CO2. The result showed that Ni loadings significantly influenced the performance of Ni/ZrO2 catalyst. The 1.6 wt% Ni loading catalyst exhibited the highest catalytic activity among all the catalysts in the selective methanation of CO in hydrogen-rich gas. The outlet concentration of CO was less than 20 ppm with the hydrogen consumption below 7%, at a gas-hourly-space velocity as high as 10000 h-1 and a temperature range of 260 °C to 280 °C. The X-ray diffraction (XRD) and temperature programmed reduction (TPR) measurements showed that NiO was dispersed thoroughly on the surface of ZrO2 support if Ni loading was under 1.6 wt%. When Ni loading was increased to 3 wt% or above, the free bulk NiO species began to assemble, which was not favorable to increase the selectivity of the catalyst.展开更多
Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated....Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.展开更多
Highly coke-resisting ZrO2-decorated Ni/A1203 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with NiO by impregnating method and then modified with ZrO2 by deposition-pr...Highly coke-resisting ZrO2-decorated Ni/A1203 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with NiO by impregnating method and then modified with ZrO2 by deposition-precipitation method (IM-DP). Nitrogen adsorption- desorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetdc analysis, H2 temperature- programmed reduction and desorption, NH3 temperature-programmed desorption, and zeta potential analysis were employed to characterize the samples. The results revealed that, compared with the catalysts with the same composition prepared by co-impregnation (CI) and sequential impregnation (SI) methods, the Ni/A1203 catalyst prepared by IM-DP showed much enhanced catalytic performance for syngas methanation under the condition of atmospheric pressure and a high weight hourly space velocity of 120000 mL.g-1 .h-1. In a 80 h life time test under the condition of 300-600 ~C and 3.0 MPa, this catalyst showed high stability and resistance to coking, and the amount of deposited carbon was only 0.4 wt%. On the contrary, the deposited carbon over the catalyst without ZrO2 reached 1.5 wt% after a 60 h life time test. The improved catalytic performance was attributed to the selective deposition of ZrO2 nanoparticles on the surface of NiO rather than A1203, which could he well controlled via changing the electrostatic interaction in the DP procedure. This unique structure could enhance the dissociation of CO2 and generate surface oxygen intermediates, thus preventing carbon deposition on the Ni particles in syngas methanation.展开更多
文摘The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.
基金the National Natural Science Foundation of China (20576023)the Guangdong Province Natural Science Foundation (06025660)
文摘Ni/ZrO2 catalysts were prepared by the incipient-wetness impregnation method and were investigated in activity and selectivity for the selective catalytic methanation of CO in hydrogen-rich gases with more than 20 vol% CO2. The result showed that Ni loadings significantly influenced the performance of Ni/ZrO2 catalyst. The 1.6 wt% Ni loading catalyst exhibited the highest catalytic activity among all the catalysts in the selective methanation of CO in hydrogen-rich gas. The outlet concentration of CO was less than 20 ppm with the hydrogen consumption below 7%, at a gas-hourly-space velocity as high as 10000 h-1 and a temperature range of 260 °C to 280 °C. The X-ray diffraction (XRD) and temperature programmed reduction (TPR) measurements showed that NiO was dispersed thoroughly on the surface of ZrO2 support if Ni loading was under 1.6 wt%. When Ni loading was increased to 3 wt% or above, the free bulk NiO species began to assemble, which was not favorable to increase the selectivity of the catalyst.
基金supported by Guangdong Provincial Natural Science Foundation of China(030514)Science and Technology Plan of Guangdong Province of China(2004B33401006)Doctoral Startup Foundation of Guang Dong Pharmaceutical University.
文摘Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.
基金supported by the National Natural Science Foundation of China(No.21476238)the National Basic Research Program(No.2014CB744306)+1 种基金the National Key Technology R&D Program of China(No.2010BAC66B01)the"Strategic Priority Research Program"of Chinese Academy of Sciences(Nos.XDA07010100 and XDA07010200)
文摘Highly coke-resisting ZrO2-decorated Ni/A1203 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with NiO by impregnating method and then modified with ZrO2 by deposition-precipitation method (IM-DP). Nitrogen adsorption- desorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetdc analysis, H2 temperature- programmed reduction and desorption, NH3 temperature-programmed desorption, and zeta potential analysis were employed to characterize the samples. The results revealed that, compared with the catalysts with the same composition prepared by co-impregnation (CI) and sequential impregnation (SI) methods, the Ni/A1203 catalyst prepared by IM-DP showed much enhanced catalytic performance for syngas methanation under the condition of atmospheric pressure and a high weight hourly space velocity of 120000 mL.g-1 .h-1. In a 80 h life time test under the condition of 300-600 ~C and 3.0 MPa, this catalyst showed high stability and resistance to coking, and the amount of deposited carbon was only 0.4 wt%. On the contrary, the deposited carbon over the catalyst without ZrO2 reached 1.5 wt% after a 60 h life time test. The improved catalytic performance was attributed to the selective deposition of ZrO2 nanoparticles on the surface of NiO rather than A1203, which could he well controlled via changing the electrostatic interaction in the DP procedure. This unique structure could enhance the dissociation of CO2 and generate surface oxygen intermediates, thus preventing carbon deposition on the Ni particles in syngas methanation.