The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si com...The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.展开更多
The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the all...The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.展开更多
Effects of Ag addition on the microsmactures, aging characteristics, tensile properties, electrochemical properties, and intergranu- lar corrosion (IGC) properties of Al 1.1Mg-0.8Si-0.9Cu-0.35Mn4).02Ti alloy were i...Effects of Ag addition on the microsmactures, aging characteristics, tensile properties, electrochemical properties, and intergranu- lar corrosion (IGC) properties of Al 1.1Mg-0.8Si-0.9Cu-0.35Mn4).02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Sii-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boun- daries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si Cu alloys.展开更多
The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grai...The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys.展开更多
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w...The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.展开更多
基金financially supported by the Science and Technology Program of Guangzhou,China(No.2015B090926013)Postdoctoral Science Foundation of China(No.2015M581348)+1 种基金Postdoctoral Science Foundation of Northeastern University(No.20150302)the Doctoral Foundation of Chinese Ministry of Education(No.20130042130001)
文摘The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0300801)the National Natural Science Foundation of China (No.51571023)+3 种基金Zhejiang Provincial Natural Science Foundation of China (No.LQ17E010001)the Beijing Municipal Natural Science Foundation (No.2172038)the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation (No.FRF-SD-B-005B)sponsored by the K.C.Wong Magna Fund in Ningbo University
文摘The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.
基金financially supported by the National Natural Science Foundation of China (No. 51574076)
文摘Effects of Ag addition on the microsmactures, aging characteristics, tensile properties, electrochemical properties, and intergranu- lar corrosion (IGC) properties of Al 1.1Mg-0.8Si-0.9Cu-0.35Mn4).02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Sii-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boun- daries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si Cu alloys.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300801)the National Natural Science Foundation of China(Nos.51871029,51571023,and 51301016)+2 种基金Beijing Natural Science Foundation(No.2172038)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation(No.FRF-SD-B-005B)The China Scholarship Council for financial support to M.X.Guo
文摘The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys.
基金supported by the general project of the National Natural Science Foundation of China(No.52071042)Chongqing Natural Science Foundation Project,China(Nos.CSTB2023NSCQ-MSX0079,cstc2021ycjh-bgzxm0148)Graduate Student Innovation Program of Chongqing University of Technology,China(No.gzlcx20232008).
文摘The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.
基金the financial support from the National Natural Science Foundation of China(No.52222510)Key Research and Development Program of Shandong Province,China(No.2021ZLGX01)。
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。