期刊文献+
共找到1,704篇文章
< 1 2 86 >
每页显示 20 50 100
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains 被引量:1
1
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 al–zn–mg–cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
2
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 alznmgcu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Improvement of microstructure and mechanical properties of Al−Cu−Li−Mg−Zn alloys through water-cooling centrifugal casting technique
3
作者 Qing-bo YANG Wen-jing SHI +4 位作者 Wen LIU Miao WANG Wen-bo WANG Li-na JIA Hu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3486-3503,共18页
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime... The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases. 展开更多
关键词 alcu−Li−mgzn alloy water-cooling centrifugal casting microstructure mechanical properties segregation behavior
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
4
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 al-zn-mg-cu alloy non-isothermal aging mechanical properties localized corrosion resistance MICROSTRUCTURE
下载PDF
高强Al-Zn-Mg-Cu合金静态再结晶模型及组织演变
5
作者 付薛洁 于惠玲 《塑性工程学报》 CAS CSCD 北大核心 2024年第7期160-167,共8页
采用Gleeble 3800热模拟试验机对航空用Al-Zn-Mg-Cu合金的热变形行为进行了测试,对变形后的微观组织进行了表征,系统分析了静态软化行为,建立了静态再结晶动力学模型。结果表明:实验用航空Al-Zn-Mg-Cu合金的静态再结晶激活能为129162 J&... 采用Gleeble 3800热模拟试验机对航空用Al-Zn-Mg-Cu合金的热变形行为进行了测试,对变形后的微观组织进行了表征,系统分析了静态软化行为,建立了静态再结晶动力学模型。结果表明:实验用航空Al-Zn-Mg-Cu合金的静态再结晶激活能为129162 J·mol^(-1),静态再结晶体积分数受变形温度、变形程度、变形速率的影响,且变形温度对静态再结晶影响最明显;变形速率一定时,变形温度越高,道次停留时间的影响越不明显;350℃低温变形后,α-Al基体晶粒内部仍存在大量的位错缠结;400℃中温变形后,位错运动能够充分进行,部分晶粒发生了再结晶;450℃高温变形后,基体晶粒基本全部完成了再结晶,基体晶粒内部发现5~25 nm尺寸范围的Al-Zn-Mg-Cu四元相粒子;对于不同热变形条件,模型预测值的误差在0.008~0.0625范围内,动力学模型的计算结果精确度较高。 展开更多
关键词 al-zn-mg-cu铝合金 静态再结晶 本构模型 微观组织
下载PDF
基于机器学习的Al-Zn-Mg-Cu合金快速设计 被引量:2
6
作者 隽永飞 牛国帅 +8 位作者 杨旸 徐子涵 杨健 唐文奇 姜海涛 韩延峰 戴永兵 张佼 孙宝德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第3期709-723,共15页
提出一种基于机器学习的合金快速设计系统(ARDS),以定制所需性能的合金制备策略或预测制备策略所对应的合金性能。为此,分别对3种回归算法:线性回归(LR)、支持向量回归(SVR)和人工神经网络(BPNN)进行建模和比较以训练多性能预测模型。其... 提出一种基于机器学习的合金快速设计系统(ARDS),以定制所需性能的合金制备策略或预测制备策略所对应的合金性能。为此,分别对3种回归算法:线性回归(LR)、支持向量回归(SVR)和人工神经网络(BPNN)进行建模和比较以训练多性能预测模型。其中,应用SVR构建的机器学习模型被证明是最佳的。然后,基于生成对抗网络(GAN)模型原理,构建Al-Zn-Mg-Cu系铝合金快速设计系统(ARDS)。对ARDS的预测可靠性进行验证。结果表明,为了能够获得准确的制备策略,系统中极限抗拉强度(UTS)、屈服强度(YS)和伸长率(EL)的输入上限分别约为790 MPa、730 MPa和28%。此外,基于ARDS预测结果,制备了一种性能优异的新型铝合金材料,其UTS为764 MPa、YS为732 MPa、EL为10.1%,进一步验证了ARDS的可靠性。 展开更多
关键词 机器学习 合金快速设计系统 al-zn-mg-cu合金 力学性能
下载PDF
锌镁比对Al-Zn-Mg-Cu-Er-Sc-Zr合金显微组织与耐腐蚀性能影响的研究 被引量:1
7
作者 王少华 武晓辉 +3 位作者 梁爽 邢清源 孟令刚 张兴国 《热加工工艺》 北大核心 2024年第6期112-116,121,共6页
通过调整Al-Zn-Mg-Cu-Er-Sc-Zr合金中的Mg元素含量,研究了Zn/Mg比的变化对合金相演变以及腐蚀性能的影响规律。结果表明:Al_(8)Cu_(4)Er相、Al_(3)(Er,Sc)相与含Fe相存在明显的伴生关系,二者依附于含Fe相生长。Zn/Mg比的变化可显著改变... 通过调整Al-Zn-Mg-Cu-Er-Sc-Zr合金中的Mg元素含量,研究了Zn/Mg比的变化对合金相演变以及腐蚀性能的影响规律。结果表明:Al_(8)Cu_(4)Er相、Al_(3)(Er,Sc)相与含Fe相存在明显的伴生关系,二者依附于含Fe相生长。Zn/Mg比的变化可显著改变三者间的交互形式,高的Zn/Mg比例有利于稀土相独立生长,且在比值为4.18的条件下,Al_(8)Cu_(4)Er相与含Fe相均得到了显著细化。细化的晶界第二相使腐蚀坑深度仅为82μm,而连续的伴生混合相、粗大稀土相等均会不同程度降低合金的耐蚀性能。 展开更多
关键词 al-zn-mg-cu-Er-Sc-Zr铝合金 zn/mg 稀土相 晶间腐蚀
下载PDF
Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy 被引量:18
8
作者 唐建国 陈慧 +4 位作者 张新明 刘胜胆 刘文军 欧阳惠 李红萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1255-1263,共9页
The effects of quenching and aging (T6, T7 and RRA) on the microstructural evolution of an A1-Zn-Mg-Cu alloy were investigated by hardness test, optical microscopy (OM), transmission electron microscopy (TEM) an... The effects of quenching and aging (T6, T7 and RRA) on the microstructural evolution of an A1-Zn-Mg-Cu alloy were investigated by hardness test, optical microscopy (OM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) measurements. It is found that the hardness of T6 aged sample after water-quenching is the highest. The quench sensitivities of T7 and RRA are almost the same, which are 1.2% higher than that of T6. TEM observation shows that the quench sensitivity for the studied alloy is mainly caused by heterogeneous precipitation during slow quenching. Many r/phases precipitate on A13Zr dispersoids inside recrystallized grains and at (sub) grain boundaries, while T and S phases form in the substructure with high density of dislocations and defects. After aging, the η' precipitates are coarser in the vicinity of equilibrium r/phase. However, the size and morphology of the precipitates show different characteristics among T6, T7 and RRA treatments. The DSC results are highly consistent with the TEM observation. The DSC curves of T6 aged samples are different from those of T7 and RRA aged samples, which also reflects the differences on the microstructure. 展开更多
关键词 al-zn-mg-cu alloy QUENCHING quench sensitivity aging PRECIPITATION
下载PDF
Microstructure of Al-Zn-Mg-Cu-Zr-0.5Er alloy under as-cast and homogenization conditions 被引量:12
9
作者 王少华 孟令刚 +4 位作者 杨守杰 房灿峰 郝海 戴圣龙 张兴国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1449-1454,共6页
The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogeniz... The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogenization conditions were studied.The results show that the grain morphology is large dendritic structure and the grain size increases obviously by the addition of 0.5% Er.Moreover,most of Er element in the alloy segregates at grain boundary during solidification,resulting in ternary Al8Cu4Er phase.After homogenization,most of the MgZn2 phase at grain boundary has dissolved back to Al matrix in the two alloys.In the Er-containing alloy,the dissolution temperature of Al8Cu4Er phase is about 575 °C.Therefore,the homogenization treatment cannot eliminate Al8Cu4Er phase validity. 展开更多
关键词 al-zn-mg-cu-Zr alloy Er al8cu4Er phase HOMOGENIZATION MICROSTRUCTURE
下载PDF
Precipitation behavior and properties of a new high strength Al-Zn-Mg-Cu alloy 被引量:13
10
作者 臧金鑫 张坤 戴圣龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2638-2644,共7页
The microstructure and the associated hardness, strength and electrical conductivity of a new Al-Zn-Mg-Cu alloy during one-step ageing treatment were systematically studied. The results show that the electrical conduc... The microstructure and the associated hardness, strength and electrical conductivity of a new Al-Zn-Mg-Cu alloy during one-step ageing treatment were systematically studied. The results show that the electrical conductivity of the alloy increased continuously with increasing ageing temperature and ageing time. At the early stage of ageing, the hardness and strength of the alloy increased rapidly and then reached the peak value. When aged at 120 °C, the hardness and strength maintained at high level for a long time after the peak value. The main precipitations are GPI zones, GPII zones and metastable η′ phase. GPI and GPII zones are found in the alloy after ageing for 24 h at 120 °C, which indicates that some stable GP zones can exist through the ageing process. When aged at 160 °C, the hardness and strength decreased rapidly after the peak value. The precipitation process is significantly promoted compared with that aged at 120 °C. Both GPI zones and GPII zones disappeared after ageing for 1 h at 160 °C. The main precipitates are η′ phase when aged at 160 °C for 1 h. The main precipitates are η phase when the ageing time prolongs to 24 h. 展开更多
关键词 al-zn-mg-cu alloy PRECIPITATION ageing microstructure HARDNESS STRENGTH electrical conductivity
下载PDF
Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization 被引量:11
11
作者 李文斌 潘清林 +2 位作者 肖艳苹 何运斌 刘晓艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2127-2133,共7页
The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectr... The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis. 展开更多
关键词 al-zn-cu-mg-Sc-Zr alloy HOMOGENIZATION microstructural evolution overburnt temperature homogenization kinetics
下载PDF
淬火冷却方式及宏观取向对Al-Zn-Mg-Cu合金力学性能的影响
12
作者 刘景新 朱士泽 +1 位作者 肖伯律 马宗义 《材料工程》 EI CAS CSCD 北大核心 2024年第9期124-132,共9页
以7050铝合金为研究对象,研究热处理状态(空冷时效与水冷时效)和宏观取向(与轧制方向成0°,45°,90°)耦合作用对合金力学性能的影响。结果表明:水冷时效态的样品中析出相细小均匀弥散,晶界无析出带较窄。在空冷时效态下,... 以7050铝合金为研究对象,研究热处理状态(空冷时效与水冷时效)和宏观取向(与轧制方向成0°,45°,90°)耦合作用对合金力学性能的影响。结果表明:水冷时效态的样品中析出相细小均匀弥散,晶界无析出带较窄。在空冷时效态下,过饱和的溶质不仅会以半共格的Al3Zr为核心形成粗大析出相,还会沿位错大量析出。此外,与水冷时效态相比,空冷时效态晶界相尺寸大幅增加,晶界无析出带显著宽化,不同宏观取向样品的强度和伸长率都明显下降。宏观取向对两种状态样品强度的差值影响较小,但对伸长率的差值影响较大。当拉伸方向与轧制方向成45°方向时,空冷诱导的伸长率下降幅度最小;当拉伸方向与轧制方向成90°时,下降幅度最大。 展开更多
关键词 al-zn-mg-cu合金 析出相 淬火敏感性 织构
下载PDF
Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature 被引量:17
13
作者 张辉 金能萍 陈江华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期437-442,共6页
The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show th... The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy. 展开更多
关键词 al-zn-mg-cu-Zr aluminum alloys flow stress dynamic recrystallization dynamic precipitation
下载PDF
Microstructure and mechanical properties of high strength Al-Zn-Mg-Cu alloys used for oil drill pipes 被引量:7
14
作者 冯春 寿文彬 +2 位作者 刘会群 易丹青 冯耀荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3515-3522,共8页
Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests a... Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests and transmission electron microscopy (TEM). The results show that the ultimate tensile strength, yield strength and elongation for Alloys A, B and C are 736 MPa, 695.5 MPa and 7%; 711 MPa, 674 MPa and 12.5%; 740.5 MPa, 707.5 MPa and 13%, respectively after solid solution treatment ((450 °C, 2 h)+(470 °C, 1 h)) followed by aging at 120 °C for 12 h. The dominant strengthening phases in Alloy A are GPII zone andη′ phase, the main precipitate in Alloy B isη′ phase, and the main precipitates in Alloy C are GPI zone, GPII zone andη′ phase, which are the reason for better comprehensive properties of Alloy C. The increase of zinc content leads to the improvement of the strength. The increase of copper content improves the elongation but slightly decreases the strength. Large second-phase particles formed by the increase in the manganese content induce a decrease in the elongation of alloys. 展开更多
关键词 al-zn-mg-cu alloy aging time PRECIPITATE microstructure mechanical properties
下载PDF
Corrosion and electrochemical behaviors of 7A09 Al-Zn-Mg-Cu alloy in chloride aqueous solution 被引量:7
15
作者 周堃 王彬 +1 位作者 赵宇 刘杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2509-2515,共7页
The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallogr... The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallographic microscopy and electrochemical measurements. The results show that both pitting corrosion from or around the intermetallic particles and intergranular corrosion are observed after the immersion test due to the inhomogeneous nature of the microstructure of the 7A09 alloy. The preferential dissolution of the anodic Cu-depleted zone along grain boundaries is believed to be the possible cause of intergranular corrosion. The passivation and depassivation of this alloy show significant dependence of immersion time, owing to the formation and dissolution of various passive films on the sample surfaces. Furthermore, the corrosion process and corrosion mechanism were also analyzed. 展开更多
关键词 7A09 al-zn-mg-cu alloy intergranular corrosion intermetallic particles electrochemical impedance spectroscopy POLARIZATION
下载PDF
Solidification behavior and elimination of undissolved Al_(2)CuMg phase during homogenization in Ce-modified Al–Zn–Mg–Cu alloy 被引量:3
16
作者 Xin-Xiang Yu Jie Sun +4 位作者 Zhu-Tie Li Han Dai Hong-Jie Fang Jun-Feng Zhao Deng-Feng Yin 《Rare Metals》 SCIE EI CAS CSCD 2020年第11期1279-1287,共9页
The solidification behavior and intermetallic phase evolution during homogenization annealing of an Al-Zn-Mg-Cu alloy with 0.12 wt%Ce addition were examined.The residual Al_(2)CuMg phase is completely dissolved after ... The solidification behavior and intermetallic phase evolution during homogenization annealing of an Al-Zn-Mg-Cu alloy with 0.12 wt%Ce addition were examined.The residual Al_(2)CuMg phase is completely dissolved after homogenization and is replaced by a large number of dispersed micro/nanoscaled AlCuCe enrichment phases within Al matrix.This change occurs because of the formation of a large number of finer lamellar eutectic network structures which are more easily dissolved into Al matrix during the homogenization process.In addition,the trapping of Cu atoms in the stable AlCuCe phase also prevents the formation of Al_(2)CuMg phase,leading to the complete dissolution of Al_(2)CuMg phase in the Al-Zn-MgCu alloy.The grain refinement behavior in Al alloy with Ce addition is similar to that in alloys with the addition of Sc,because of the formation of primary Ce-enriched Al_(11)Ce_(3)phase as the nucleation agent ofα(Al)during solidification. 展开更多
关键词 al–zn–mg–cu alloy al_(2)cumg phase HOMOGENIZATION Grain refinement
原文传递
Low cycle fatigue behavior of T4-treated Al-Zn-Mg-Cu alloys prepared by squeeze casting and gravity die casting 被引量:6
17
作者 郑成坤 张卫文 +1 位作者 张大童 李元元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3505-3514,共10页
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m... Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface. 展开更多
关键词 al-zn-mg-cu alloy squeeze casting gravity die casting microstructure mechanical properties low cycle fatigue
下载PDF
Microstructure evolution in cooling process of Al-Zn-Mg-Cu alloy and kinetics description 被引量:4
18
作者 张玉华 杨树财 纪宏志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2087-2091,共5页
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results... The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant. 展开更多
关键词 al-zn-mg-cu alloy microstructure evolution PRECIPITATION kinetics model
下载PDF
Microstructure of spray formed Al-Zn-Mg-Cu alloy with Mn addition 被引量:7
19
作者 蔡元华 梁瑞光 +1 位作者 苏占培 张济山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期9-14,共6页
With the aim to improve the strength of Al-Zn-Mg-Cu alloy,the alloy billet containing Mn was produced by spray forming method,and the microstructural features were investigated using X-ray diffraction(XRD),optical m... With the aim to improve the strength of Al-Zn-Mg-Cu alloy,the alloy billet containing Mn was produced by spray forming method,and the microstructural features were investigated using X-ray diffraction(XRD),optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and differential scanning calorimetry(DSC).The results show that the billet mainly consists of fine equiaxial grains of MgZn2 and Al6Mn with size ranging from 5 μm to 25 μm.Nano-scaled MgZn2 is dispersed in the as-sprayed alloy,primary Al6Mn particles are precipitated at grain boundaries with an average size of 5 μm.A few CuAl2,Al3Zr and eutectic are also found in as-sprayed Al alloy.The volume fraction of the porosity is about 12%.DSC result indicates that most of the solutes are precipitated during spray forming process,and no obviously thermal effects occur below 450 ℃.Both matrix grains and Al6Mn particles grow monotonously with the increase of annealing temperature,but the growth rate of Al6Mn particles is markedly lower than that of Al grains,and the matrix grains grow rapidly when the annealing temperature is above 375 ℃. 展开更多
关键词 al-zn-mg-cu alloy spray forming MANGANESE MICROSTRUCTURE
下载PDF
Sc对Al-8.5Zn-2.3Mg-2.4Cu合金组织与性能的影响
20
作者 成义锐 孙小涵 +3 位作者 贺永东 赵亿坤 杜玉峰 梁飞龙 《矿冶工程》 CAS 北大核心 2024年第5期142-147,共6页
研究了Sc对Al-8.5Zn-2.3Mg-2.4Cu合金组织与性能的影响。结果表明:Al-Zn-Mg-Cu铸态合金中添加Sc后,合金晶粒尺寸明显减小;Sc含量(质量分数)由0增加至0.4%时,合金晶粒尺寸由107.7μm减小至49.96μm,硬度由116.8HV增加至130.2HV。经大变... 研究了Sc对Al-8.5Zn-2.3Mg-2.4Cu合金组织与性能的影响。结果表明:Al-Zn-Mg-Cu铸态合金中添加Sc后,合金晶粒尺寸明显减小;Sc含量(质量分数)由0增加至0.4%时,合金晶粒尺寸由107.7μm减小至49.96μm,硬度由116.8HV增加至130.2HV。经大变形量热轧处理后进行470℃×1 h固溶处理发现,相较未添加Sc的合金,含Sc合金位错密度增大;添加0.4%Sc的合金再结晶率由92.4%降低至45.7%,合金的再结晶行为受到抑制。经120℃×24 h时效处理后,添加0.4%Sc的Al-Zn-Mg-Cu合金中观察到大量弥散分布的圆球状Al_(3)Sc粒子和短棒状η′(MgZn_(2))粒子,通过绘制与α(Al)共格或半共格的Al_(3)Sc-MgZn_(2)晶体结构模型,可推测出Al_(3)Sc粒子为η′(MgZn_(2))相提供异质形核位点,促进其形核,对合金时效析出强化有促进作用。 展开更多
关键词 微合金化 al-zn-mg-cu合金 再结晶 al3Sc粒子 异质形核位点 析出强化
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部