期刊文献+
共找到2,188篇文章
< 1 2 110 >
每页显示 20 50 100
Tuning Li/Ni mixing by reactive coating to boost the stability of cobalt-free Ni-rich cathode 被引量:1
1
作者 Fanghui Du Xitong Zhang +7 位作者 Yingchao Wang Lei Ding Pengfang Zhang Lingyang Liu Dong Wang Jianzong Man Yuling Chen Yunwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期20-29,I0002,共11页
Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s... Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials. 展开更多
关键词 Cobalt-free Ni-rich cathode Li/Ni mixing al doping Li_(3)PO_(4) coating Lithium-ion batteries
下载PDF
Combined effects of ultrasonic vibration and FeCoNiCrCu coating on interfacial microstructure and mechanical properties of Al/Mg bimetal by compound casting
2
作者 Yuan-cai Xu Wen-ming Jiang +3 位作者 Qing-qing Li Ling-hui Yu Xiao-peng Yu Zi-tian Fan 《China Foundry》 SCIE EI CAS CSCD 2024年第5期588-598,共11页
In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea... In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%. 展开更多
关键词 ultrasonic vibration FeCoNiCrCu HEA coating al/Mg bimetal interfacial microstructure shear strength compound casting
下载PDF
Micro-aluminum powder with bi-or tri-component alloy coating as a promising catalyst:Boosting pyrolysis and combustion of ammonium perchlorate
3
作者 Chao Wang Ying Liu +6 位作者 Mingze Wu Jia Li Ying Feng Xianjin Ning Hong Li Ningfei Wang Baolu Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期100-113,共14页
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ... A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy. 展开更多
关键词 Micro-aluminum powder(μal) Nano-sized alloy coating Combustion catalyst Ammonium perchlorate Pyrolysis behavior Ignition and combustion
下载PDF
Self-repairing Al_(2)O_(3)-TiO_(2)coatings fabricated through plasma electrolytic oxidation with various cathodic pulse parameters
4
作者 Mehri HASHEMZADEH Keyvan RAEISSI +4 位作者 Fakhreddin ASHRAFIZADEH Frank SIMCHEN Amin HAKIMIZAD Monica SANTAMARIA Thomas LAMPKE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3326-3343,共18页
The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed... The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted. 展开更多
关键词 al2O3−TiO2 coating plasma electrolytic oxidation potassium titanyl oxalate electrochemical impedance spectroscopy
下载PDF
添加WC颗粒对镁合金表面等离子喷涂Al基涂层耐腐蚀和耐磨损性能的影响
5
作者 Haroon RASHID 雒晓涛 +2 位作者 董昕远 张黎 李长久 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第7期2275-2288,共14页
常规热喷涂工艺制备的金属涂层内的粒子界面弱结合导致其不能为基材提供长效的腐蚀防护,因此,采用大气等离子喷涂,实现粒子间的冶金结合,制备高致密Al-15%WC(体积分数)复合涂层。结果表明,由于WC颗粒中C元素的去氯效应,以及超高温熔滴(&... 常规热喷涂工艺制备的金属涂层内的粒子界面弱结合导致其不能为基材提供长效的腐蚀防护,因此,采用大气等离子喷涂,实现粒子间的冶金结合,制备高致密Al-15%WC(体积分数)复合涂层。结果表明,由于WC颗粒中C元素的去氯效应,以及超高温熔滴(>1800℃)间的自冶金结合,在最优等离子喷涂条件下制备出无氧化物杂质的涂层。涂层的致密结构使其表现出优异耐腐蚀性能,其腐蚀电流密度比镁合金基体降低4个数量级,比纯铝块材降低2个数量级。WC硬质颗粒的添加使Al-WC复合涂层的耐磨损性能相较纯Al块材提高1个数量级。 展开更多
关键词 大气等离子喷涂 al-wc涂层 自冶金结合 去氧效应 耐腐蚀性 耐磨性
下载PDF
Preparation of ultra-fine grain Ni-Al-WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing 被引量:4
6
作者 熊拥军 邱子力 +3 位作者 李瑞迪 袁铁锤 吴宏 刘锦辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3685-3693,共9页
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele... The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect. 展开更多
关键词 laser clad friction stir processing Ni-al-wc coating ultra-fine grain interlocking bonding
下载PDF
Mitigating the negative catalytic effect of CuO by FAS-17 coated Al nanopowder:Isothermal ageing of Al/CuO nanothermite at 71°C and 60%relative humidity
7
作者 Fuwei Li Qian Wang +6 位作者 Jian Cheng Zehua Zhang Yuxuan Zhou Keer Ouyang Jianbing Xu Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期156-167,共12页
The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due t... The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment. 展开更多
关键词 al/CuO nanothermite FAS-17 coating Aging and failure process
下载PDF
Wear characteristics of spheroidal graphite roll WC-8Co coating produced by electro-spark deposition 被引量:21
8
作者 WANG Jiansheng, MENG Huimin, YU Hongying, FAN Zishuan, and SUN Dongbai School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期174-179,共6页
Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were inv... Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive X-ray(EDX) and ball-disc configuration wear tester.The results show that nanosized particles and amorphous structures prevail in the coating which is metallurgically bonded to the substrate.The microstructures of the transition zone include columnar structure and equiaxed structure.The primary phases of the coating contain W2C, W6C2.54, Fe3W3C, and Co3W3C.The results of abrasive test show that the coating has low friction coefficients(μaverage = 0.18) and the wear mechanisms are mainly abrasive wear, fatigue wear, and oxidation wear.The maximum microhardness value of the coating is about 17410 N/mm2.The study reveals that the electro-spark deposition process has better coating quality and the coating has high wear resistance and hardness. 展开更多
关键词 electro-spark deposition wc/Co coatings wear resistance microstructure
下载PDF
Microstructure,microhardness and corrosion resistance of laser cladding Ni−WC coating on AlSi5Cu1Mg alloy 被引量:12
9
作者 Min ZENG Hong YAN +1 位作者 Bao-biao YU Zhi HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2716-2728,共13页
The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,im... The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating. 展开更多
关键词 laser cladding Ni−wc coating alSi5Cu1Mg mechanical properties corrosion resistance
下载PDF
Oxidation Performance of Fe-Al/WC Composite Coatings Produced by High Velocity Arc Sprayed at 650 ℃ 被引量:1
10
作者 MENGFan-Jun XUBin-Shi ZHUSheng MAShi-Ning ZHANGWeiZHUZi-Xin 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期930-933,共4页
The Fe-Al/WC intermetallic composite coatings have been prepared by high velocity arc spraying(HVAS) technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings has been studied by means of th... The Fe-Al/WC intermetallic composite coatings have been prepared by high velocity arc spraying(HVAS) technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings has been studied by means of thermogrativmetic analyzer. The results demonstrate that the kinetics curve of oxidation approximately follows the logarithmic law. The composition of the oxidized coating surface mainly is composed of A12O3, Fe2O3, Fe3O4 and FeO which distribute unevenly. The protective A12O3 film firstly forms and preserves the coatings from further oxidation. 展开更多
关键词 wc HVAS al2O3 FE3O4 FE2O3
下载PDF
Influence of Heat Treatment on Microstructure and Sliding Wear Behavior of Fe-Al/WC Composite Coatings 被引量:1
11
作者 朱子新 杜则裕 +2 位作者 徐滨士 马世宁 张伟 《Transactions of Tianjin University》 EI CAS 2003年第2期93-97,共5页
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c... An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings. 展开更多
关键词 high velocity arc spraying composite coating iron aluminide intermetallics wc heat treatment MICROSTRUCTURE sliding wear behavior
下载PDF
Thermal sprayed WC-Co coatings and their mechanical properties 被引量:5
12
作者 WANG You,YANG Yong,TIAN Wei,and LI Chonggui Department of Materials Science,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期280-285,共6页
HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powder... HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powders.The microstructures of the as-prepared WC-12%Co coatings were then characterized by using XRD analyzer and SEM.The mechanical properties of the two coatings were evaluated by microhardness test,bend test,cup test,tensile test and abrasive wear test.The results showed that the mechanical properties of WC-12%Co coatings sprayed with nanostructured WC-12%Co powder is higher than that of coatings sprayed with microstructured WC-12%Co powders,and the reasons were discussed. 展开更多
关键词 thermal spraying wc-Co coating nanostructured material mechanical property
下载PDF
Influence of Interfacial Diffusion on Mechanical Property of Vacuum Fusion Sinter (VFS) WC-Co Composite Coating 被引量:1
13
作者 HUANG Xin-bo FAN Kang-qi +2 位作者 SUN Qin-dong LIN Hua-chun JIA Jian-yuan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第2期69-72,共4页
The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstruct... The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstructure and morphology of VFS coatings were observed and analyzed by SEM, X-ray diffractometer and microhardness tester. Diffusion coefficient of every element was calculated by using the experimental results. The influence of the interracial diffusion on the microstructure, Vickers hardness and interracial bond strength of the VFS coatings was studied in detail. The experimental results show that there is a metallurgical bond area between the VFS WC-Co coatings and the steel substrate. The VFS coatings are characterized by the gradient hardness of the interface and the high bond strength to the steel substate, both of which are beneficial to the improvement of the wear resistance and corrosion resistance. 展开更多
关键词 vacuum fusion sintering wc-Co composite coating interracial diffusion bond strength
下载PDF
Tribological Behavior of Thermally Sprayed WC Coatings under Water Lubrication 被引量:1
14
作者 Chaoqun Zhang Masahiro Fujii 《Materials Sciences and Applications》 2016年第9期527-541,共15页
Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the... Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the fine pulverization equipment which is used in the woody biomass production process is required to have wear resistance in the water environment. Thermally sprayed coatings would be a good candidate to improve surface wear resistance under water lubrication. The objective of this study was to evaluate the tribological performance of thermally sprayed coatings under water lubrication. Thermally sprayed coatings which were classified into WC, WB and Ni spraying of three categories were compared with water-lubricated sliding test at a sliding velocity of 0.02 m/s and mean pressure of p0 = 10 MPa with a ring-on-disk apparatus. Thermally sprayed coatings showed comparatively high friction coefficient and well wear resistance under water lubrication. WC contained coatings showed better wear resistance than WB and Ni coatings. Thermally sprayed coatings showed obviously different mechanical properties and tribological behaviors, and the effect of wettability and hardness on tribological characteristics was discussed under water lubrication. Friction coefficient increased as the surface contact angle of thermally sprayed coatings increased. The wear rate decreased as the surface hardness of thermally sprayed coatings increased. Wear resistance of thermally sprayed coatings was excellent under water lubrication. WC contained coatings showed lower wear rate than WB and Ni coatings. WC-14CoCr coating showed the lowest wear rate. 展开更多
关键词 Thermally Spraying wc coatings Water Lubrication FRICTION WEAR
下载PDF
Oxidation behavior of Fe40Al-xWC composite coatings obtained by high-velocity oxygen fuel thermal spray
15
作者 向军淮 朱星河 +3 位作者 陈钢 段智 林彦 刘莹 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第6期1545-1550,共6页
The Fe40Al-xWC(x=0,10,12,15)coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF)spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide in... The Fe40Al-xWC(x=0,10,12,15)coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF)spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide insight into the oxidation behavior of the as-deposited coatings at 650℃under 0.1 MPa flowing pure O2.The present results show differences in the oxidation behavior of Fe40Al coating and Fe40Al-xWC composite coatings.The irregular Fe2O3 layer is seen on the top surface of the composite coatings.Fe40Al coating and Fe40Al-15WC composite coating both suffer a catastrophic corrosion due to the formation of a porous structure during 24 h of oxidation.However,Fe40Al-10WC and Fe40Al-12WC composite coatings show a good oxidation resistance behavior due to their dense structure. 展开更多
关键词 wc复合涂层 氧化行为 高速氧燃料 热喷涂 高流速 多孔结构 al涂层 碳化钨粉
下载PDF
Microstructure and Properties Characterization of WC-Co-Cr Thermal Spray Coatings 被引量:1
16
作者 Karla Ofelia Méndez-Medrano Cecilio Jesús Martínez-González +3 位作者 Francisco Alvarado-Hernández Omar Jiménez Víctor Hugo Baltazar-Hernández Haideé Ruiz-Luna 《Journal of Minerals and Materials Characterization and Engineering》 2018年第4期482-497,共16页
WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spr... WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spraying technique. Therefore, this study is aimed to evaluate and determine the effect of the deposition parameters on the properties and microstructural characteristics of WC-Co-Cr coatings using a more economical thermal spray technique. In particular, the influence of flame spray parameters on the microstructure, crystal structure, hardness, and sliding wear resistance of WC- Co-Cr coatings was examined. Two parameters were considered: Type of flame (reducing, neutral and oxidizing), and the spray torch nozzle exit area. Results indicated that WC particles undergo considerable degree of decarburization and dissolution during spraying, showing substantial amounts of W2C, W, and Co3W3C, for all the considered conditions. However, the extent of phase transformation depended largely on the flame chemistry. The microstructure of the coatings was mainly affected by the spray nozzle. Regarding the sliding wear behavior, the coatings with uniform distribution of hard particles provided the best wear resistance. The decomposition of WC into W2C phase seems to have meaningless significance in the mass loss, nevertheless, the WC phase transformation to metallic tungsten and η-phase (Co3W3C) produce higher wear rates due to deficiency of carbide particles and embrittlement of the binder phase which induces cracking and delamination of the splats. 展开更多
关键词 wc-Co-Cr Thermal SPRAY coating X-RAY Phase Content Microstructure FLAME
下载PDF
Oxidation performance of Fe-Al/WC composite coatings produced by high velocity arc spraying
17
作者 孟凡军 徐滨士 +2 位作者 朱胜 马世宁 张伟 《Journal of Central South University》 SCIE EI CAS 2005年第S2期221-225,共5页
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room t... Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation. 展开更多
关键词 HIGH temperature OXIDATION HIGH velocity ARC SPRAYING FE-al INTERMETalLICS composite coating
下载PDF
Friction and Wear Properties of High-velocity Oxygen Fuel Sprayed WC-17Co Coating under Rotational Fretting Conditions
18
作者 LUO Jun CAI Zhenbing +2 位作者 MO Jiliang PENG Jinfang ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期515-521,共7页
Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engin... Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed(HVOF) technique WC-17 Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope(SEM), energy dispersive X-ray spectroscopy(EDX), and X-ray diffractrometry(XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy(OM), and surface topography. The experimental results reveal that the WC-17 Co coating adjusted the boundary between the partial slip regime(PSR) and the slip regime(SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17 Co coating in prevention of rotational fretting wear. 展开更多
关键词 fretting wear rotational fretting wc-17Co coating LZ50 steel HVOF
下载PDF
Influence of pyrolytic carbon coatings on complex permittivity and microwave absorbing properties of Al_2O_3 fiber woven fabrics 被引量:5
19
作者 丁冬海 周万城 +1 位作者 罗发 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期354-359,共6页
The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ... The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz. 展开更多
关键词 complex permittivity pyrolytic coating al2O3 fiber fabric
下载PDF
High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate 被引量:5
20
作者 王红星 张炎 +1 位作者 成家林 李玉山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期184-190,共7页
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the... The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h. 展开更多
关键词 COPPER Ni2al3 coating high temperature oxidation resistance Nial phase pack aluminizing
下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部