A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
An attempt was made to improve the surface properties of the AZ91 Mg alloy through surface alloying of a mixture of Al and TiC with the help of TIG arc as heat source.The microstructural evolution of the alloyed layer...An attempt was made to improve the surface properties of the AZ91 Mg alloy through surface alloying of a mixture of Al and TiC with the help of TIG arc as heat source.The microstructural evolution of the alloyed layer on the AZ91 alloy was analysed through SEM and XRD technique.The micro-hardness and the dry sliding wear behaviour were assessed by Vickers micro-hardness tester and pin-on-disc wear test setup,respectively.It is revealed that almost uniform alloyed layer forms on the AZ91 alloy substrate for a specific current and scan speed employed in the present experiments.The alloyed layer exhibits hardness value up to 305 HV0.25,and almost negligible wear as compared to the as-received AZ91 alloy substrate.展开更多
Al-containing coatings were prepared on AZ31 magnesium alloy by pack-cementation technology.X-ray diffraction(XRD),backscattered electron imaging(BSEI)and energy dispersive spectroscopy(EDS)were jointly employed to ch...Al-containing coatings were prepared on AZ31 magnesium alloy by pack-cementation technology.X-ray diffraction(XRD),backscattered electron imaging(BSEI)and energy dispersive spectroscopy(EDS)were jointly employed to characterize the phases,microstructure and composition of the coated samples.The results show that the feedstock composition has a significant impact on the phases,microstructure and thickness of the coatings.For the sample with AlCl3 powder as the activator,the coating is very thick and composed of gradient phases and structures from surface to inside,including small amount ofb-Mg2Al3,coarse eutectic-like structure ofγ-Mg17Al12+δ-Mg,and fineγ-Mg17Al12 precipitations.In contrast,for the sample with AlCl3 and pure Al composite powders as the activator,the coating is relatively thin and contains a thin Al2O3 layer and a small amount of fineγ-Mg17Al12 precipitates.For the pack-cementation aluminizing that is not protected by high-vacuum or inert gas,the addition of pure Al powders can easily introduce the Al2O3 layer into the coating to prevent active Al ions further penetrating into the magnesium matrix,resulting in the thin Al-containing coating.The microhardness and corrosion behavior of the two kinds of aluminized coatings were also studied and discussed.展开更多
Most hulls of the ships are protected with paintings, sacrificial anode, and impressed current cathodic protection methods against corrosion problems. However, these conventional methods are not very effective because...Most hulls of the ships are protected with paintings, sacrificial anode, and impressed current cathodic protection methods against corrosion problems. However, these conventional methods are not very effective because the rudder of ships stern are exposed to very severe corrosive environment such as tides, speeds of ships, cavitations and erosion corrosion. The environmental factors such as cavitation and corrosion will cause damage for materials with the shock wave by the creation and destruction of bubble. To solve these problems, the cavitation and electrochemical experiments are executed for thermal spray coating with Al-Zn alloy wire material. Thereafter, and sealed specimens with F-Si sealer on Al-Zn alloy coated specimen are executed to improve electrochemical and anti-cavitation characteristics in sea water. The application of fluorine silicon sealing after spray coating of 15%Al-85%Zn seems to be appropriate not only in static environment but also in dynamic environment.展开更多
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c...An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.展开更多
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.
文摘An attempt was made to improve the surface properties of the AZ91 Mg alloy through surface alloying of a mixture of Al and TiC with the help of TIG arc as heat source.The microstructural evolution of the alloyed layer on the AZ91 alloy was analysed through SEM and XRD technique.The micro-hardness and the dry sliding wear behaviour were assessed by Vickers micro-hardness tester and pin-on-disc wear test setup,respectively.It is revealed that almost uniform alloyed layer forms on the AZ91 alloy substrate for a specific current and scan speed employed in the present experiments.The alloyed layer exhibits hardness value up to 305 HV0.25,and almost negligible wear as compared to the as-received AZ91 alloy substrate.
基金the National Natural Science Foundation of China(No.51575073)International Cooperation Special Project in Science and Technology of China(No.2015DFR70480)Scientific and Technological Research Program of Chongqing,China(Nos.cstc2017jcyjBX0031,cstc2018jszx-cyzdX0126).
文摘Al-containing coatings were prepared on AZ31 magnesium alloy by pack-cementation technology.X-ray diffraction(XRD),backscattered electron imaging(BSEI)and energy dispersive spectroscopy(EDS)were jointly employed to characterize the phases,microstructure and composition of the coated samples.The results show that the feedstock composition has a significant impact on the phases,microstructure and thickness of the coatings.For the sample with AlCl3 powder as the activator,the coating is very thick and composed of gradient phases and structures from surface to inside,including small amount ofb-Mg2Al3,coarse eutectic-like structure ofγ-Mg17Al12+δ-Mg,and fineγ-Mg17Al12 precipitations.In contrast,for the sample with AlCl3 and pure Al composite powders as the activator,the coating is relatively thin and contains a thin Al2O3 layer and a small amount of fineγ-Mg17Al12 precipitates.For the pack-cementation aluminizing that is not protected by high-vacuum or inert gas,the addition of pure Al powders can easily introduce the Al2O3 layer into the coating to prevent active Al ions further penetrating into the magnesium matrix,resulting in the thin Al-containing coating.The microhardness and corrosion behavior of the two kinds of aluminized coatings were also studied and discussed.
文摘Most hulls of the ships are protected with paintings, sacrificial anode, and impressed current cathodic protection methods against corrosion problems. However, these conventional methods are not very effective because the rudder of ships stern are exposed to very severe corrosive environment such as tides, speeds of ships, cavitations and erosion corrosion. The environmental factors such as cavitation and corrosion will cause damage for materials with the shock wave by the creation and destruction of bubble. To solve these problems, the cavitation and electrochemical experiments are executed for thermal spray coating with Al-Zn alloy wire material. Thereafter, and sealed specimens with F-Si sealer on Al-Zn alloy coated specimen are executed to improve electrochemical and anti-cavitation characteristics in sea water. The application of fluorine silicon sealing after spray coating of 15%Al-85%Zn seems to be appropriate not only in static environment but also in dynamic environment.
文摘An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.