BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy compos...BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.展开更多
The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stres...The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TIC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TIC side, which is consistent with the stress FEM calculating results.展开更多
Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared...Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared samples were examined by X-ray diffraction (XRD) and laser particle size analyzer, respectively. The results show that Sample B has more crystalline defects and smaller average diameter than Sample A. The cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that Sample B has better electrochemical performance than Sample A, such as better reaction reversibility, lower charge-transfer resistance and better cyclic stability. Proton diffusion coefficient of Sample B is 1.96×10-10cm2/s, which is two times as large as that (9.78×10-11cm2/s) of Sample A. The charge-discharge tests show that the discharge capacity (308 mA·h/g) of Sample B is 25 mA·h/g higher than that of Sample A (283 mA·h/g).展开更多
Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work...Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation.展开更多
Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has ...Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has been applied as a mediate layer in order to reduce residual stress. The microstracture, phase composition of the interfaces between the metal and Ni3Al are determined and the mechanical properties of the gradient materials are characterized. Elemental concentration profiles across the interfaces between layers showed significant diffusion dissolution and formation of firm bonds. Measured micro-hardness values of the sample increased monotonically from the metal substrate to the surface layer of composites. The values for the surface composite layer ranged from about 2 000 HK to 3 300 HK. The results of this investigation demonstrate the feasibility of field activated diffusion bonding process for rapid preparation of FGMs.展开更多
Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key pr...Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.展开更多
Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that...Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.展开更多
基金Project (10972190) supported by the National Natural Science Foundation of China Projects (09A089, 08C207) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject (2010FJ3132) supported by the Planned Science and Technology Project of Hunan Province,China
文摘BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.
基金supported by National Natural Science Foundation of China (Grant No. 50874069)Development Project of Science and Technology of Shandong Province (2007GG10004016)+1 种基金Shandong Province Natural Science Foundation (Y2007F54)Excellent Mid-Youth Foundation of Shandong Province (2006BS04004)
文摘The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TIC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TIC side, which is consistent with the stress FEM calculating results.
基金Project (10774030) supported by the National Natural Science Foundation of ChinaProject (2008J1-C161) supported by the Science and Technology Program of Guangzhou City of China
文摘Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared samples were examined by X-ray diffraction (XRD) and laser particle size analyzer, respectively. The results show that Sample B has more crystalline defects and smaller average diameter than Sample A. The cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that Sample B has better electrochemical performance than Sample A, such as better reaction reversibility, lower charge-transfer resistance and better cyclic stability. Proton diffusion coefficient of Sample B is 1.96×10-10cm2/s, which is two times as large as that (9.78×10-11cm2/s) of Sample A. The charge-discharge tests show that the discharge capacity (308 mA·h/g) of Sample B is 25 mA·h/g higher than that of Sample A (283 mA·h/g).
基金supported by the National Natural Science Foundation of China(U1862111,U1232119)Sichuan Provincial International Cooperation Project(2017HH0030)the Innovative Research Team of Sichuan Province(2016TD0011)~~
文摘Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation.
基金Acknowledgment The authors wish to thank the financial support for this research from the National Natural Science Foundation of China (Grant No. 50975190) and the Army Office of Research (ZAM).
文摘Functionally gradient samples are prepared by getting metal Ni or Cu bonded with Ni-matrix composites reinforced by TiB2 particles by field activated diffusion bonding process. The intermetallic compound of Ni3Al has been applied as a mediate layer in order to reduce residual stress. The microstracture, phase composition of the interfaces between the metal and Ni3Al are determined and the mechanical properties of the gradient materials are characterized. Elemental concentration profiles across the interfaces between layers showed significant diffusion dissolution and formation of firm bonds. Measured micro-hardness values of the sample increased monotonically from the metal substrate to the surface layer of composites. The values for the surface composite layer ranged from about 2 000 HK to 3 300 HK. The results of this investigation demonstrate the feasibility of field activated diffusion bonding process for rapid preparation of FGMs.
基金supported by the National Natural Science Foundation of China(No.50171025)open project of foundation of National Key Laboratory of Metal Matrix Composite,Shanghai Jiaotong University
文摘Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.
基金supported by the National Natural Science Foundation of China (Grant No. 51201171)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA03A512)
文摘Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.