期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Ce含量和T6热处理对Al-0.3Fe-0.1Si合金组织与性能的影响 被引量:1
1
作者 唐鹏 杨学轩 +2 位作者 于凯来 黄赛莎 覃皓 《铸造》 CAS 北大核心 2023年第11期1456-1462,1455,共8页
研究了稀土元素Ce和T6热处理工艺对Al-0.3Fe-0.1Si合金组织和性能的影响。结果表明,添加适量的稀土Ce和T6热处理均可抑制晶粒长大,并有效细化Al-0.3Fe-0.1Si合金的晶粒尺寸。当稀土Ce的加入量为0.2%时,铸态合金的抗拉强度为81.7 MPa,比... 研究了稀土元素Ce和T6热处理工艺对Al-0.3Fe-0.1Si合金组织和性能的影响。结果表明,添加适量的稀土Ce和T6热处理均可抑制晶粒长大,并有效细化Al-0.3Fe-0.1Si合金的晶粒尺寸。当稀土Ce的加入量为0.2%时,铸态合金的抗拉强度为81.7 MPa,比加入量为0.1%时提高了10.7%。稀土Ce的加入量为0.3%时,T6态合金的电导率为58.13%IACS,比铸态合金提高了2.3%。热处理前后的Al-0.3Fe-0.1Si-0.1Ce合金与Al-0.3Fe-0.1Si-0.3Ce合金的电导率接近。当稀土Ce的加入量为0.1%~0.2%时Al-0.3Fe-0.1Si合金获得较好的综合性能。本研究的结果可为导电Al-0.3Fe-0.1Si合金制备提供理论和试验参考。 展开更多
关键词 稀土元素ce T6热处理 al-0.3fe-0.1Si合金 导电性能 力学性能
下载PDF
Hot compressive behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B titanium alloy 被引量:1
2
作者 王国 惠松骁 +1 位作者 叶文君 米绪军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2965-2971,共7页
The hot deformation behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B (TACFB) titanium alloy was investigated using a Gleeble-1500D thermal simulator in the temperature range of 800-950 °C, at constant strain rate from 0.01 ... The hot deformation behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B (TACFB) titanium alloy was investigated using a Gleeble-1500D thermal simulator in the temperature range of 800-950 °C, at constant strain rate from 0.01 s-1 to 10 s-1 and with height reduction of 70%. Flow stress and microstructure evolution during hot compression of TACFB alloy were investigated. The processing map of TACFB alloy was obtained. The results indicate that the hot deformation behavior of TACFB alloy is sensitive to the deformation temperature and strain rate. The peak flow stress decreases with increasing the test temperature and decreasing the strain rate. The constitutive relationship of TACFB alloy was obtained on the base of Arrhenius equations. When the strain rates are higher than 1.0 s-1, the dynamic recrystallization occurs, and the higher the strain rates are, the more the recrystallization is. 展开更多
关键词 titanium alloy Ti-3.0al-3.7Cr-2.0fe-0.1B alloy hot compressive constitutive relationship processing map dynamic recrystallization
下载PDF
Influence of Rare Earth(Ce and La) Addition on the Performance of Al-3.0 wt%Mg Alloy 被引量:7
3
作者 张欣 王泽华 +1 位作者 ZHOU Zehua XU Jianming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期611-618,共8页
The influences of rare earth elements(cerium and lanthanum) on the microstructure and phases of Al-3.0 wt%Mg alloys used for electromagnetic shielding wire were characterized by scanning electron microscopy(SEM), ... The influences of rare earth elements(cerium and lanthanum) on the microstructure and phases of Al-3.0 wt%Mg alloys used for electromagnetic shielding wire were characterized by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The mechanical properties and electrical resistivity were also investigated. The results indicated that a certain content of rare earth could improve the purification of the aluminum molten, enhance the strength, and reduce the electrical resistivity of Al-3.0 wt%Mg alloys. The strength reached the top value when RE content was 0.3 wt% while the alloy with 0.2 wt% RE addition had the smallest electrical resistivity. The elongation varied little when RE addition was no more than 0.2 wt%. But the excessive addition of rare earth would be harmful to the microstructure and properties of Al-3.0 wt%Mg alloys. 展开更多
关键词 al-3.0 wt%Mg alloy ce and La additions microstructure mechanical property electrical resistivity
下载PDF
Effects of cerium and phosphorus on microstructures and properties of hypereutectic Al-21%Si alloy 被引量:12
4
作者 王爱琴 张利军 谢敬佩 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第5期522-525,共4页
The influences of P and rare earth (RE) complex modifier on the microstructure and mechanical properties of hypereutectic Al-21%Si alloy were studied. The ingots were made by metal mold casting and the proportion of... The influences of P and rare earth (RE) complex modifier on the microstructure and mechanical properties of hypereutectic Al-21%Si alloy were studied. The ingots were made by metal mold casting and the proportion of Ce+P ingredient was different. The result showed that the size of grains could be refined obviously by the Ce+P modifier and the effect of phosphorus was more intensive The primary silicon crystal was refined, while the needle-like eutectic silicon was turned fibrous or short. The alloy mechanical prop- erties had the best performance when 0.08% P and 0.6% Ce were added. The modification of primary silicon grains mainly depended on the heterogeneous nucleation mechanism, and the metamorphic mechanism of eutectic silicon was explained by adsorbing-twirming theory. The strengthening mechanism of experimental alloy was also discussed. The σb, 20 ℃ increases from 236.2 to 287.6 MPa and σb, 300 ℃ increases from 142.5 to 210 MPa. 展开更多
关键词 al-21Si alloy ce+P) modification complexes microstructure wear mechanism rare earths
原文传递
Microstructure and mechanical properties of Al-7Si-0.7Mg alloy formed with an addition of(Pr+Ce) 被引量:14
5
作者 宋宪臣 闫洪 张小军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第4期412-418,共7页
Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al... Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al-7Si-0.7Mg alloy was modified with (Pr+Ce) addition. The needle-like eutectic silicon phase developed into rose form and the crystalline grains decreased in size and showed a high degree of spheroidization. When the amount of the (Pr+Ce) addition reached 0.6 wt.%, the mean diameter was 31.8μm (refined by 50%). The aspect ratio decreased to 1.35, and the tensile strength and ductility reached 192.4 MPa and 2.18%, respectively At higher levels of addition, over-modification occurred, as indicated by increased grain size and reduced mechanical properties. The poisoning effect of the (Pr+Ce) addition on eutectic silicon and the constitutional supercooling caused by the (Pr+Ce) addition were the major causes of alloy modification, grain refinement, and the improvement of mechanical properties. 展开更多
关键词 al-7Si-0.7Mg alloy (Pr+ce addition modification mechanical properties constitutional supercooling rare earths
原文传递
Effect of Ce on solute redistribution in liquid ahead of solid–liquid interface during solidification of Fe–4 wt.%Si alloy 被引量:2
6
作者 Yun-ping Ji Ming-xing Zhang +3 位作者 Yuan Hou Tong-xin Zhao Yi-ming Li Hui-ping Ren 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第10期1251-1258,共8页
The high efficiency of Ce addition in grain refinement ofδ-ferrite in a cast Fe–4 wt.%Si alloy was verified.In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite,the convention... The high efficiency of Ce addition in grain refinement ofδ-ferrite in a cast Fe–4 wt.%Si alloy was verified.In order to further understand the solute effect of Ce on the grain refinement of δ-ferrite,the conventional directional solidification technique,which enabled to freeze the solid–liquid interface to room temperature,was used to investigate the interfacial morphology and solute redistribution in the liquid at the front of the interface,together with thermodynamic calculation of the equilibrium partition coefficients of Ce and Si in Fe–4 wt.%Si–Ce system using the Equilib module and the FsStel database in FactSage software system.Metallographic examination using a laser scanning confocal microscope showed a transition of the solid–liquid interface from planar to cellular in the Fe–4 wt.%Si alloy after adding 0.0260 wt.%Ce during the directional solidification experiment.Further,electron probe microanalysis revealed an enhanced segregation of Si solute in the liquid at the front of the solid–liquid interface due to the Ce addition.This solute segregation is considered as the cause of planar to cellular interface transition,which resulted from the creation of constitutional supercooling zone.Thermodynamic calculation indicated that Ce also segregated at the solid–liquid interface and the Ce addition had negligible effect on the equilibrium partition coefficient of Si.It is reasonable to consider that the contribution of Ce to the grain refinement ofδ-ferrite in the cast Fe–4 wt.%Si alloy as a solute was marginal. 展开更多
关键词 ce fe-4 wt.%Si alloy Solute redistribution Directional solidification Electron probe microanalysis Thermodynamic calculation
原文传递
Corrosion behavior of Ce-doped Ni-10Cu-11Fe-6Al(wt%) inert anode in molten CaCl_2 salt 被引量:1
7
作者 Mehdi Alzamani Kourosh Jafarzadeh Arash Fattah-alhosseini 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第2期218-224,共7页
In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-d... In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce. 展开更多
关键词 Ni-10Cu-11fe-6Al ce doping Corrosion behavior MOLTEN CACL2 SALT Nickel-based alloy Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部