Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolut...Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1.展开更多
This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500machine over deformation temperature range of300-450℃and strain rate of0.01-10s^-1.The mic...The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500machine over deformation temperature range of300-450℃and strain rate of0.01-10s^-1.The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy(TEM)and electron back scatter diffractometry(EBSD).The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters.The peak stress level,steady flow stress,dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate.Conversely,the high angle grain boundary area increases,the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs.The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state.The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of184.2538kJ/mol.The constitutive equation and the hot processing map were established.The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from380to450℃and strain rate range from0.01to0.1s^-1.展开更多
Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behavio...Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).展开更多
Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of...Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.展开更多
The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a pois...The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a poisoning effect of the Al?5Ti?B grain refinement. In addition, Sr intermetallic compounds distribute on the TiB2 particles, which agglomerate inside the eutectic Si. The mechanism responsible for such poisoning was discussed. The addition of Mn changes the morphology of iron intermetallic compounds fromβ-Al5FeSi toα-Al(Mn,Fe)Si. Increasing the amount of Mn changes the morphology ofα-Al(Mn,Fe)Si from branched shape to rod-like shape with branched distribution, and finally convertsα-Al(Mn,Fe)Si to Chinese script shape. The microstructure observed by transmission electron microscopy (TEM) shows that Mg is more likely to interact with Sn in contrast with Si under the effect of Sn. Mg2Sn compound preferentially precipitates between the Si/Si interfaces and Al/Si interfaces.展开更多
Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigu...Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains.展开更多
Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Rese...Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.展开更多
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01...Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.展开更多
The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that fr...The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater.展开更多
A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using ...A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.展开更多
The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in...The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.展开更多
To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain...To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.展开更多
Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure,...Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally.展开更多
Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m...Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.展开更多
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact...The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact velocity of fracture ranges from 217 m/s to 236 m/s. Smooth surfaces and ductile dimple areas were observed on the fracture surfaces. As the impact velocity reached 260 m/s, the serious melting regions were also observed on the fracture surfaces. Self-organization of cracks emerges when the impact velocity reaches 260 m/s, while some special cracks whose "tips" are not sharp but arc and smooth, and without any evidence of deformation or adiabatic shear band were also observed on the impact end surfaces. Examination of the sections of these special cracks reveals that the cracks expand along the two maximum shear stress directions respectively, and finally intersect as a tridimensional "stagger ridge" structure.展开更多
The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ...The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.展开更多
基金Project(31115014)supported by the of Open Research Fund Program of State Key Laboratory of Advanced Design and Manufacture forVehicle Body(Hunan University)Project(12JJ9017)supported by the Natural Science Foundation of Hunan Province,China
文摘Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1.
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金Project (2017JJ2073) supported by the Natural Science Foundation of Hunan Province,China
文摘The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500machine over deformation temperature range of300-450℃and strain rate of0.01-10s^-1.The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy(TEM)and electron back scatter diffractometry(EBSD).The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters.The peak stress level,steady flow stress,dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate.Conversely,the high angle grain boundary area increases,the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs.The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state.The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of184.2538kJ/mol.The constitutive equation and the hot processing map were established.The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from380to450℃and strain rate range from0.01to0.1s^-1.
基金partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1005726)Technology development Program (No. RS-2023-00220823) funded by the Ministry of SMEs and Startups (MSS, Korea)+1 种基金the Electronics Technology Development Project (No. 20026289) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)partly supported by the research grant of the Kongju National University in 2022
文摘Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).
基金Project supported by Tsinghua-Wuxi Science Foundation, China
文摘Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.
文摘The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a poisoning effect of the Al?5Ti?B grain refinement. In addition, Sr intermetallic compounds distribute on the TiB2 particles, which agglomerate inside the eutectic Si. The mechanism responsible for such poisoning was discussed. The addition of Mn changes the morphology of iron intermetallic compounds fromβ-Al5FeSi toα-Al(Mn,Fe)Si. Increasing the amount of Mn changes the morphology ofα-Al(Mn,Fe)Si from branched shape to rod-like shape with branched distribution, and finally convertsα-Al(Mn,Fe)Si to Chinese script shape. The microstructure observed by transmission electron microscopy (TEM) shows that Mg is more likely to interact with Sn in contrast with Si under the effect of Sn. Mg2Sn compound preferentially precipitates between the Si/Si interfaces and Al/Si interfaces.
基金Project(NCET-10-0278)supported by Program for New Century Excellent Talents in University,China
文摘Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University,China
文摘Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.
基金Project(51301065)supported by the National Natural Science Foundation of ChinaProject(15B063)supported by the Youth Research Foundation of Education Bureau of Hunan Province,China
文摘Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.
基金Project (50823008) supported by the National Natural Science Foundation of ChinaProject (2009AA03Z105) supported by the High-tech Research and Development Program of China
文摘The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater.
基金Project(51405059)supported by the National Natural Science Foundation of ChinaProject(2014M551074)supported by the China Postdoctoral Science FoundationProject(NCET-10-0278)supported by the Program for New Century Excellent Talents in University
文摘A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.
基金Projects(5140521651165032)supported by the National Natural Science Foundation of China+3 种基金Project(20151BAB216018)supported by the Natural Science Foundation of Jiangxi ProvinceChinaProject(GJJ14200)supported by the Education Commission Foundation of Jiangxi ProvinceChina
文摘The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.
基金Project(2012CB619503)supported by the Natioanl Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.
基金Project(51175022)supported by the National Natural Science Foundation of ChinaProject(51318040315)supported by the National Defense Pre-research of China+1 种基金Project(09000114)supported by Initial Funding for the Doctoral Program of BIGCProject(E-a-2014-13)supported by BIGC Key Project
文摘Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally.
基金Project (51205102) supported by the National Natural Science Foundation of ChinaProject (2012M511401) supported by the China Postdoctoral Science FoundationProject (gf201101001) supported by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, China
文摘Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.
基金Project (51001014) supported by the Young Scientists Fund of the National Natural Science Foundation of China
文摘The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact velocity of fracture ranges from 217 m/s to 236 m/s. Smooth surfaces and ductile dimple areas were observed on the fracture surfaces. As the impact velocity reached 260 m/s, the serious melting regions were also observed on the fracture surfaces. Self-organization of cracks emerges when the impact velocity reaches 260 m/s, while some special cracks whose "tips" are not sharp but arc and smooth, and without any evidence of deformation or adiabatic shear band were also observed on the impact end surfaces. Examination of the sections of these special cracks reveals that the cracks expand along the two maximum shear stress directions respectively, and finally intersect as a tridimensional "stagger ridge" structure.
基金Project(2014M562447) supported by the China Postdoctoral Science FoundationProject(51275416) supported by the National Natural Science Foundation of China+1 种基金Project(BP201503) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)China
文摘The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.