The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM ...The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.展开更多
The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and...The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.展开更多
The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipit...The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.展开更多
The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al–13Si–7.5Cu–1Mg alloy were investigated.The microstructures of alloys be...The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al–13Si–7.5Cu–1Mg alloy were investigated.The microstructures of alloys before and after conform processing and aging were compared by transmission electron microscopy and scanning electron microscopy,respectively.The results reveal that the primary phases were broken and refined by intense shear deformation during conform processing.After the conform-prepared Al–13Si–7.5Cu–1Mg alloy was subjected to solid-solution treatment at 494℃for 1.5 h and aging at 180℃for 4 h,its hardness improved from HBS 115.8 to HBS 152.5 and its ultimate tensile strength increased from 112.6 to 486.8 MPa.Its wear resistance was also enhanced.The factors leading to the enhanced strength,hardness,and wear resistance of the alloy were discussed in detail.展开更多
Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al...Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al-7Si-0.7Mg alloy was modified with (Pr+Ce) addition. The needle-like eutectic silicon phase developed into rose form and the crystalline grains decreased in size and showed a high degree of spheroidization. When the amount of the (Pr+Ce) addition reached 0.6 wt.%, the mean diameter was 31.8μm (refined by 50%). The aspect ratio decreased to 1.35, and the tensile strength and ductility reached 192.4 MPa and 2.18%, respectively At higher levels of addition, over-modification occurred, as indicated by increased grain size and reduced mechanical properties. The poisoning effect of the (Pr+Ce) addition on eutectic silicon and the constitutional supercooling caused by the (Pr+Ce) addition were the major causes of alloy modification, grain refinement, and the improvement of mechanical properties.展开更多
Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization micr...Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization microstructures, the alloy tested at room temperature(RT) exhibits higher 0.2% proof stress(YS) of 206 MPa, ultimate tensile strength(UTS) of 331 MPa and elongation of 10%. Increasing aging time improves the YS and UTS and reduces the ductility of the alloy. Further increasing aging time beyond72 h does not signi?cantly increase the tensile strengths. Increasing test temperature significantly decreases the tensile strengths and increases the ductility of the alloy. The UTS of the alloy can be estimated by using the hardness. The Portevin–Le Chatelier effect occurs at RT due to the interactions between solid solution atoms and dislocations. Similar behaviors occurring at 250℃ are attributed to dynamic strain aging mechanism. Increasing aging time leads to decrease in the strain-hardening exponent(n) value and increase in the strain-hardening coeficient(k) value. Increasing test temperature apparently decreases the n and k values. Eutectic phase particles cracking and debonding determine the fracture mechanism of the alloy. Final failure of the alloy mainly depends on the global instability(high temperature, necking) and local instability(RT, shearing). Different tensile behaviors of the alloy are mainly attributed to different matrix strengths, phase particle strengths and damage rate.展开更多
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51871043)supported by the National Natural Science Foundation of ChinaProject(N180212010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.
基金Project(51274245) supported by the National Natural Science Foundation of China
文摘The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.
文摘The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.
基金financially supported by the National Natural Science Foundation of China (No.51274245)
文摘The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al–13Si–7.5Cu–1Mg alloy were investigated.The microstructures of alloys before and after conform processing and aging were compared by transmission electron microscopy and scanning electron microscopy,respectively.The results reveal that the primary phases were broken and refined by intense shear deformation during conform processing.After the conform-prepared Al–13Si–7.5Cu–1Mg alloy was subjected to solid-solution treatment at 494℃for 1.5 h and aging at 180℃for 4 h,its hardness improved from HBS 115.8 to HBS 152.5 and its ultimate tensile strength increased from 112.6 to 486.8 MPa.Its wear resistance was also enhanced.The factors leading to the enhanced strength,hardness,and wear resistance of the alloy were discussed in detail.
基金Project supported by the National Natural Science Foundation of China(51364035)Ministry of Education tied up with the Special Research Fund for the Doctoral Program for Higher School(20133601110001)+1 种基金Loading Program of Science and Technology of College of Jiangxi Province(KJLD14003)Open Project Program of Jiangxi Engineering Research Center of Process and Equipment for New Energy,East China Institute of Technology(JXNE2015-09)
文摘Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al-7Si-0.7Mg alloy was modified with (Pr+Ce) addition. The needle-like eutectic silicon phase developed into rose form and the crystalline grains decreased in size and showed a high degree of spheroidization. When the amount of the (Pr+Ce) addition reached 0.6 wt.%, the mean diameter was 31.8μm (refined by 50%). The aspect ratio decreased to 1.35, and the tensile strength and ductility reached 192.4 MPa and 2.18%, respectively At higher levels of addition, over-modification occurred, as indicated by increased grain size and reduced mechanical properties. The poisoning effect of the (Pr+Ce) addition on eutectic silicon and the constitutional supercooling caused by the (Pr+Ce) addition were the major causes of alloy modification, grain refinement, and the improvement of mechanical properties.
基金supported by the Project Funded by China Postdoctoral Science Foundation(No.2015M571562)
文摘Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization microstructures, the alloy tested at room temperature(RT) exhibits higher 0.2% proof stress(YS) of 206 MPa, ultimate tensile strength(UTS) of 331 MPa and elongation of 10%. Increasing aging time improves the YS and UTS and reduces the ductility of the alloy. Further increasing aging time beyond72 h does not signi?cantly increase the tensile strengths. Increasing test temperature significantly decreases the tensile strengths and increases the ductility of the alloy. The UTS of the alloy can be estimated by using the hardness. The Portevin–Le Chatelier effect occurs at RT due to the interactions between solid solution atoms and dislocations. Similar behaviors occurring at 250℃ are attributed to dynamic strain aging mechanism. Increasing aging time leads to decrease in the strain-hardening exponent(n) value and increase in the strain-hardening coeficient(k) value. Increasing test temperature apparently decreases the n and k values. Eutectic phase particles cracking and debonding determine the fracture mechanism of the alloy. Final failure of the alloy mainly depends on the global instability(high temperature, necking) and local instability(RT, shearing). Different tensile behaviors of the alloy are mainly attributed to different matrix strengths, phase particle strengths and damage rate.