TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ...TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.展开更多
The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling ...The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.展开更多
基金Project(51174098)supported by the National Natural Science Foundation of ChinaProject(kjsmcx0903)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China+2 种基金Project(1202015B)supported by the Postdoctoral Science Foundation of Jiangsu Province,ChinaProject(03)supported by the Undergraduate Practice-Innovation Training Foundation of Jiangsu University,ChinaProjects(GY2012020,GY2013032)supported by the Science and Technology Support Plan Project Foundation of Zhenjiang City,China
文摘TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing.
文摘The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.