Steel-mushy Al-20Sn alloy bonding was studied for the first time. The relationship model about preheat temperature of steel plate, solid fraction of Al-20Sn alloy mushy, rolling speed and interfacial shear strength of...Steel-mushy Al-20Sn alloy bonding was studied for the first time. The relationship model about preheat temperature of steel plate, solid fraction of Al-20Sn alloy mushy, rolling speed and interfacial shear strength of bonding plate could be established by artificial neural networks perfectly. This model could be optimized with a genetic algorithm. The optimum bonding parameters were: 505 degreesC for preheat temperature of steel plate, 34.3% for solid fraction of Al-20Sn alloy mushy and 10 mm/s for rolling speed, and the largest interfacial shear strength of bonding plate was 71.2 MPa.展开更多
PEO ceramic coatings including ZrO_2-Al_2O_3-SiO_2 in three phases were prepared on an Al-12.5%Si alloy in electrolyte solutions containing ZrO_2 nanoparticles. The microstructures and phases of the coatings were anal...PEO ceramic coatings including ZrO_2-Al_2O_3-SiO_2 in three phases were prepared on an Al-12.5%Si alloy in electrolyte solutions containing ZrO_2 nanoparticles. The microstructures and phases of the coatings were analyzed by SEM and XRD, and the heat insulation performance and the thermal shock resistance of the coatings were investigated. The compactness of the coating increased significantly and the hindrance of the Si element on plasma electrolytic oxidation process was effectively weakened. The growth rate of the coating was improved substantially with the addition of ZrO_2 nanoparticles. The PEO ceramic coatings are primarily composed of SiO_2 and high temperature steady phases such as a-Al_2O_3 and c-ZrO_2. Both the content of c-ZrO_2 and the heat-insulating property of the coating increased significantly. The ceramic coatings with special microstructure and composition formed in the solutions containing ZrO_2 nanoparticles possess excellent heat insulation performance and thermal shock resistance.展开更多
Macrosegregations and microstructures of Al-7%Si alloy solidified under complex of fects of magnetic field and centrifugal forces are studied by means of a set of selfdesigned electromagnetic centrifugal casting (EMC...Macrosegregations and microstructures of Al-7%Si alloy solidified under complex of fects of magnetic field and centrifugal forces are studied by means of a set of selfdesigned electromagnetic centrifugal casting (EMCC) device. It is shown that electromagnetic field (EMF) has an important effect on the macrosegregation of centrifugal casting specimen of Al-7%Si alloy in two respects: one is that there exists always a kind of convection in the liquid in front of the S/L interface caused by effect ofthe electromagnetic force; the other is that different atomic clusters of solidparticles with different physical characteristics are subjected to quite different electromagnetic (Lorentz) force. Therefore, their movements get changed. In addition, the formation process of a complex band structure consisting of primary α-Al dendrites and (α-Al+β-Si) eutectics in hypoeutectic Al-Si alloys during EMCC and the effect of EMF are discussed.展开更多
The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys a...The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.展开更多
The static and dynamic precipitation behavior of solution-treated binary Al-20 wt.% Zn alloy is investigated via artificial aging, cold rolling and artificial aging combined with cold rolling. The solution-treated Al-...The static and dynamic precipitation behavior of solution-treated binary Al-20 wt.% Zn alloy is investigated via artificial aging, cold rolling and artificial aging combined with cold rolling. The solution-treated Al-Zn alloy exhibits high thermal stability during aging, and low densities of nano-sized Zn particles are precipitated along with AI grain boundaries after aging at 200℃ for 13 h. Compared with static precipitation, dynamic precipitation occurs more easily in the Al-Zn alloy. Zn clusters are obtained after cold rolling at an equivalent plastic strain of 0.6, and the size of the Zn phase reaches hundreds of nanometers when the strain is increased to 12.1. The results show that the speed of static precipitation can be significantly enhanced after the application of 2.9 rolling strain. Grain refinement and defects induced by cold rolling are considered to promote Zn precipitation. The hardness of Al-Zn alloy is also affected by static and dynamic precipitations.展开更多
In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanis...In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as AI4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃).展开更多
Al-5Ti-B and Al-5Ti-B-Gd master alloy refiners were fabricated by fluorine salt casting method.The microstructure and phase constitution of the master alloys were investigated by scanning electron microscopy (SEM),tra...Al-5Ti-B and Al-5Ti-B-Gd master alloy refiners were fabricated by fluorine salt casting method.The microstructure and phase constitution of the master alloys were investigated by scanning electron microscopy (SEM),transmission electron microscopy (TEM) and X-ray diffraction (XRD).The results show that Al-Ti-B alloy refiner consists of Al_(3)Ti phase and TiB2 phase.After Gd is introduced into the intermediate alloy,Ti_(2)Al_(20)Gd phase appears in the alloy,the size of Al_(3)Ti is significantly reduced,and Ti-Al-Gd phase is found in the edge of Al_(3)Ti phase.At the same time,some independent Ti-Al-Gd phases appear in local areas,which are Ti_(2)Al_(20)Gd phase determined by micro-area electron diffraction analysis.Analysis and calculation results of the high-resolution images of the Ti_(2)Al_(20)Gd/Al structure show that there is no other compound at the junction between the Ti_(2)Al_(20)Gd phase and Al,and Ti_(2)Al_(20)Gd phase has a great difference in atomic space with the α-Al,which cannot be directly used as heterogeneous nucleus.But,after being decomposed in the aluminum melt,the Ti_(2)Al_(20)Gd phase can promote the refinement effect of the refiner.In the Al-Ti-B-Gd master alloy,there are many dispersed Al_(3)Ti particles with a size of less than 1 μm,which can promote the Al-5Ti-B refining effect.展开更多
文摘Steel-mushy Al-20Sn alloy bonding was studied for the first time. The relationship model about preheat temperature of steel plate, solid fraction of Al-20Sn alloy mushy, rolling speed and interfacial shear strength of bonding plate could be established by artificial neural networks perfectly. This model could be optimized with a genetic algorithm. The optimum bonding parameters were: 505 degreesC for preheat temperature of steel plate, 34.3% for solid fraction of Al-20Sn alloy mushy and 10 mm/s for rolling speed, and the largest interfacial shear strength of bonding plate was 71.2 MPa.
基金Funded by the National Natural Science Foundation of China(Nos.51401155 and 51771140)Key Research and Development Plan in Shaanxi(No.2018GY-111)+1 种基金Shaanxi Provincial Department of Education Industrialization Cultivation Project(No.17JF009)Yulin Science and Technology Project(No.2016-16-4)and Shaanxi Science and Technology Co-ordination Innovation Project(No.2016KTZDGY-04-01)
文摘PEO ceramic coatings including ZrO_2-Al_2O_3-SiO_2 in three phases were prepared on an Al-12.5%Si alloy in electrolyte solutions containing ZrO_2 nanoparticles. The microstructures and phases of the coatings were analyzed by SEM and XRD, and the heat insulation performance and the thermal shock resistance of the coatings were investigated. The compactness of the coating increased significantly and the hindrance of the Si element on plasma electrolytic oxidation process was effectively weakened. The growth rate of the coating was improved substantially with the addition of ZrO_2 nanoparticles. The PEO ceramic coatings are primarily composed of SiO_2 and high temperature steady phases such as a-Al_2O_3 and c-ZrO_2. Both the content of c-ZrO_2 and the heat-insulating property of the coating increased significantly. The ceramic coatings with special microstructure and composition formed in the solutions containing ZrO_2 nanoparticles possess excellent heat insulation performance and thermal shock resistance.
文摘Macrosegregations and microstructures of Al-7%Si alloy solidified under complex of fects of magnetic field and centrifugal forces are studied by means of a set of selfdesigned electromagnetic centrifugal casting (EMCC) device. It is shown that electromagnetic field (EMF) has an important effect on the macrosegregation of centrifugal casting specimen of Al-7%Si alloy in two respects: one is that there exists always a kind of convection in the liquid in front of the S/L interface caused by effect ofthe electromagnetic force; the other is that different atomic clusters of solidparticles with different physical characteristics are subjected to quite different electromagnetic (Lorentz) force. Therefore, their movements get changed. In addition, the formation process of a complex band structure consisting of primary α-Al dendrites and (α-Al+β-Si) eutectics in hypoeutectic Al-Si alloys during EMCC and the effect of EMF are discussed.
文摘The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.
基金Supported by the National Basic Research Program of China under Grant No 2013CB733000the Natural Science Foundation of Guangxi Province under Grant No 2015GXNSFBA139238the Guangxi'Bagui'Teams for Innovation and Research
文摘The static and dynamic precipitation behavior of solution-treated binary Al-20 wt.% Zn alloy is investigated via artificial aging, cold rolling and artificial aging combined with cold rolling. The solution-treated Al-Zn alloy exhibits high thermal stability during aging, and low densities of nano-sized Zn particles are precipitated along with AI grain boundaries after aging at 200℃ for 13 h. Compared with static precipitation, dynamic precipitation occurs more easily in the Al-Zn alloy. Zn clusters are obtained after cold rolling at an equivalent plastic strain of 0.6, and the size of the Zn phase reaches hundreds of nanometers when the strain is increased to 12.1. The results show that the speed of static precipitation can be significantly enhanced after the application of 2.9 rolling strain. Grain refinement and defects induced by cold rolling are considered to promote Zn precipitation. The hardness of Al-Zn alloy is also affected by static and dynamic precipitations.
基金funded by the National Natural Science Foundation of China(51371077)
文摘In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as AI4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃).
文摘Al-5Ti-B and Al-5Ti-B-Gd master alloy refiners were fabricated by fluorine salt casting method.The microstructure and phase constitution of the master alloys were investigated by scanning electron microscopy (SEM),transmission electron microscopy (TEM) and X-ray diffraction (XRD).The results show that Al-Ti-B alloy refiner consists of Al_(3)Ti phase and TiB2 phase.After Gd is introduced into the intermediate alloy,Ti_(2)Al_(20)Gd phase appears in the alloy,the size of Al_(3)Ti is significantly reduced,and Ti-Al-Gd phase is found in the edge of Al_(3)Ti phase.At the same time,some independent Ti-Al-Gd phases appear in local areas,which are Ti_(2)Al_(20)Gd phase determined by micro-area electron diffraction analysis.Analysis and calculation results of the high-resolution images of the Ti_(2)Al_(20)Gd/Al structure show that there is no other compound at the junction between the Ti_(2)Al_(20)Gd phase and Al,and Ti_(2)Al_(20)Gd phase has a great difference in atomic space with the α-Al,which cannot be directly used as heterogeneous nucleus.But,after being decomposed in the aluminum melt,the Ti_(2)Al_(20)Gd phase can promote the refinement effect of the refiner.In the Al-Ti-B-Gd master alloy,there are many dispersed Al_(3)Ti particles with a size of less than 1 μm,which can promote the Al-5Ti-B refining effect.