Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behavio...Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and...The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.展开更多
The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock...The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.展开更多
High pressure solidification rules of Al-Mg alloy needs to be discussed further for its wide range of application. Microstructures and phases of Al-25wt% Mg alloy solidified at 4 GPa were studied by optical microscope...High pressure solidification rules of Al-Mg alloy needs to be discussed further for its wide range of application. Microstructures and phases of Al-25wt% Mg alloy solidified at 4 GPa were studied by optical microscope,X-ray diffractmeter,energy dispersive X-ray spectroscopy and transmission electron microscopy( TEM). The microstructure evolution mechanism of Al-25Mg alloy under high pressure was analyzed. The result shows that the alloy consists of α-Al phase and Al 3 Mg 2 phase under normal pressure. However,only Al 12 Mg 17 phase forms without Al 3 Mg 2 phase at 4 GPa. In addition,Mg concentration in α-Al phase increases and that of the lattice constant also increases. The α-Al dendrite presents the broken arms under normal pressure, after high pressure solidification,the morphology of the dendrite tends to integrate and the size of the dendrite arms展开更多
Binary Al-4Mg alloy have been deformed by hot torsion at 300-500 deg C andstrain rates of 0.006-1.587 s^(-1) to a true strain of 5.5. The specimens were annealed in vacuumfor 1.5 h at 500 deg C and then water quenched...Binary Al-4Mg alloy have been deformed by hot torsion at 300-500 deg C andstrain rates of 0.006-1.587 s^(-1) to a true strain of 5.5. The specimens were annealed in vacuumfor 1.5 h at 500 deg C and then water quenched. The study indicates that the dynamicrecrystallization occurs during hot torsion of Al-4Mg alloy in a certain range of Z parameter(Zener-Hollmon Parameter), i.e. 19.3 <= lnZ <=24.8. Increasing the strain rate at higher deformationtemperature or reducing the strain rate at lower deformation temperature accelerates the occurrenceof dynamic recrystallization in the alloy.展开更多
The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM ...The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.展开更多
The hot-compression of Al-IMn-IMg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s 1 by total strain...The hot-compression of Al-IMn-IMg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s 1 by total strain of 1.4. Microstructure and texture evolution of the hot-compressed alloy were investigated by optical microscopy and X-ray diffraction analysis, respectively. The results show that the relationship among flow stress a, deformation temperature T and strain rate ε can be expressed in the form of βσ = lnε+Q/(RT)-lnA. The threshold value of In Z (Z is Zener-Hollomon parameter) characterizing the dynamic recrystallization (DRX) is 46, below which the DRX takes place. A strong P orientation {011}(455) associated with a weak cube orientation { 100} (001) is found in the recrystallized sample during hot-compression.展开更多
The mechanical properties of Al-6Mg alloy with three treatment states (H112, O and cold-extruded states) were investigated at room and high temperatures using an INSTRON machine and a Split Hopkinson Pressure Bar (...The mechanical properties of Al-6Mg alloy with three treatment states (H112, O and cold-extruded states) were investigated at room and high temperatures using an INSTRON machine and a Split Hopkinson Pressure Bar (SHPB). Stress-strain curves of the alloy with different processes were obtained at a quasi-static strain rate of 5×10-4 s-1and dynamic strain rates of 1 400-4 200 s-1, respectively. The results suggest that, at room temperature, the three processed Al-6Mg alloys are all low sensitive to strain rate. The O state Al-6Mg alloy (Al-6Mg-O) exhibits the most ductility, while the cold-extruded Al-6Mg alloy (Al-6Mg-C) displays the highest strength. At elevated temperatures, the yield stresses and the differences in yield stress of the three processed alloys all decrease with increasing temperature under the quasi-static strain rate of 5×10-4 s-1. Based on test results, modified Johnson-Cook (JC) constitutive models for the three processed Al-6Mg alloys were developed. The microstructures before and after deformation were examined by electron backscattered diffraction (EBSD) and further dynamic recrystallization (DRX) at the strain rate of 3 300 s-1 was discussed.展开更多
The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipit...The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.展开更多
Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through f...Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.展开更多
The Mg65Cu25Y10 melts were quenched at a temperature of 973 K under various pressures in the range of 2-5 GPa and ambient pressure. The microstructure of the solidified specimens has been investigated by X-ray diffrac...The Mg65Cu25Y10 melts were quenched at a temperature of 973 K under various pressures in the range of 2-5 GPa and ambient pressure. The microstructure of the solidified specimens has been investigated by X-ray diffraction, transmission electron microscope and electron probe microanalysis. Experimental results show that the pressure has a great influence on the solidification microstructure of the Mg65Cu25Y10. At ambient pressure, the solidification products are Mg2(Cu,Y) and a very small amount of Y2O3 inclusion. As the pressure is above 2 GPa, a new Cu2(Y,Mg) phase appears, while Y2O3 is not observed at the pressure of 3, 4 and 5 GPa. When the pressure increases from 2 GPa to 5 GPa, the grain sizes of Mg2(Cu,Y) and Cu2(Y,Mg) decrease from 125, 96 nm to 80, 7 nm, respectively. The mechanisms for the effects of the pressure on the phase evolution and microstructure during solidification process of Mg65Cu25Y10 alloy have been discussed.展开更多
Corrosion inhibition of Al and Al-3.5Mg alloy by organic compounds, namely chalcones in hydrochloric acid solutions has been investigated by rapid polarization technique and weight loss method. Polarization measuremen...Corrosion inhibition of Al and Al-3.5Mg alloy by organic compounds, namely chalcones in hydrochloric acid solutions has been investigated by rapid polarization technique and weight loss method. Polarization measurements show that, the inhibitors act cathodically both in case of Al and Al-3.5Mg alloy. It was found from the weight loss measurements that, the inhibition efficiency depends on the substituent in the chalcone compound. The relative inhibitive efficiency of these compounds has been explained on the basis of structure dependent electron donor properties of the inhibitors and the metal inhibitor interaction on the surface. The inhibition efficiency ranges from 16 to 64% for Al and from 30% to 91% for Al-3.5Mg alloy展开更多
To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic AI-25Si alloy, a new environmentally friendly AI-20.6Mn-12Ti-0.9P-6.1Cu (by wt.%) master all...To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic AI-25Si alloy, a new environmentally friendly AI-20.6Mn-12Ti-0.9P-6.1Cu (by wt.%) master alloy was fabricated; and its modification and strengthening mechanisms on the AI-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the AI-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as e-AI phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the AI-25Si alloys with the addition of 4wt.% AI-20.6Mn-12Ti- 0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 IJm (unmodified) to 13.83 pm and 35 IJm (unmodified) to 7 tim; the e-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ℃ reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic AI-25Si alloy.展开更多
The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {000...The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {0001}(1210) textures a {1210}(1010) texture and a {0001}(uvtw)fibre texture are formed after cold rolling. The {0001} (1210) texture is also strengthened simultaneously. The activation process of slip systems is discussed concerning formation of the rolling texture. Because of the disappearance of {0001} (nvtw) fibre texture the primary recrystallization process should occur and the {1210}(1010) texture forms during annealing展开更多
The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)...The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM).The results show that the tensile strength can be significantly improved with the slightly decreased ductility and the form of fracture morphology is converted from ductile fracture into ductile/britde mixed fracture by adding 1.0%Li.Besides,the peak aging time at 185 ℃ is delayed from 12 to 24 h and the main precipitation phase S(Al2CuMg) is converted into S'(Al2CuMg)+δ(Al3Li),while the formation of S'(Al2CuMg) is delayed.展开更多
The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al–13Si–7.5Cu–1Mg alloy were investigated.The microstructures of alloys be...The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al–13Si–7.5Cu–1Mg alloy were investigated.The microstructures of alloys before and after conform processing and aging were compared by transmission electron microscopy and scanning electron microscopy,respectively.The results reveal that the primary phases were broken and refined by intense shear deformation during conform processing.After the conform-prepared Al–13Si–7.5Cu–1Mg alloy was subjected to solid-solution treatment at 494℃for 1.5 h and aging at 180℃for 4 h,its hardness improved from HBS 115.8 to HBS 152.5 and its ultimate tensile strength increased from 112.6 to 486.8 MPa.Its wear resistance was also enhanced.The factors leading to the enhanced strength,hardness,and wear resistance of the alloy were discussed in detail.展开更多
基金partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1005726)Technology development Program (No. RS-2023-00220823) funded by the Ministry of SMEs and Startups (MSS, Korea)+1 种基金the Electronics Technology Development Project (No. 20026289) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)partly supported by the research grant of the Kongju National University in 2022
文摘Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moir&#233; fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
基金Project(51274245) supported by the National Natural Science Foundation of China
文摘The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.
文摘The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.
基金Sponsored by the Scientific Research Foundation of Heilongjiang Institute of Science and Technology for the Introduction of High-Qualified Talents(Grant No.08-12)Department of Education of Heilongjiang Province Science and Technology Research Projects(Grant No.12523042)
文摘High pressure solidification rules of Al-Mg alloy needs to be discussed further for its wide range of application. Microstructures and phases of Al-25wt% Mg alloy solidified at 4 GPa were studied by optical microscope,X-ray diffractmeter,energy dispersive X-ray spectroscopy and transmission electron microscopy( TEM). The microstructure evolution mechanism of Al-25Mg alloy under high pressure was analyzed. The result shows that the alloy consists of α-Al phase and Al 3 Mg 2 phase under normal pressure. However,only Al 12 Mg 17 phase forms without Al 3 Mg 2 phase at 4 GPa. In addition,Mg concentration in α-Al phase increases and that of the lattice constant also increases. The α-Al dendrite presents the broken arms under normal pressure, after high pressure solidification,the morphology of the dendrite tends to integrate and the size of the dendrite arms
基金The project was sponsored by the Education Administration Major Project for Science Research under the contract No. 99134.
文摘Binary Al-4Mg alloy have been deformed by hot torsion at 300-500 deg C andstrain rates of 0.006-1.587 s^(-1) to a true strain of 5.5. The specimens were annealed in vacuumfor 1.5 h at 500 deg C and then water quenched. The study indicates that the dynamicrecrystallization occurs during hot torsion of Al-4Mg alloy in a certain range of Z parameter(Zener-Hollmon Parameter), i.e. 19.3 <= lnZ <=24.8. Increasing the strain rate at higher deformationtemperature or reducing the strain rate at lower deformation temperature accelerates the occurrenceof dynamic recrystallization in the alloy.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51871043)supported by the National Natural Science Foundation of ChinaProject(N180212010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.
基金Project(2007BAE38B01) supported by National Science and Technology Pillar Program
文摘The hot-compression of Al-IMn-IMg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s 1 by total strain of 1.4. Microstructure and texture evolution of the hot-compressed alloy were investigated by optical microscopy and X-ray diffraction analysis, respectively. The results show that the relationship among flow stress a, deformation temperature T and strain rate ε can be expressed in the form of βσ = lnε+Q/(RT)-lnA. The threshold value of In Z (Z is Zener-Hollomon parameter) characterizing the dynamic recrystallization (DRX) is 46, below which the DRX takes place. A strong P orientation {011}(455) associated with a weak cube orientation { 100} (001) is found in the recrystallized sample during hot-compression.
基金Funded by the Special Funds of National Space Debris(No.KJSP06211)
文摘The mechanical properties of Al-6Mg alloy with three treatment states (H112, O and cold-extruded states) were investigated at room and high temperatures using an INSTRON machine and a Split Hopkinson Pressure Bar (SHPB). Stress-strain curves of the alloy with different processes were obtained at a quasi-static strain rate of 5×10-4 s-1and dynamic strain rates of 1 400-4 200 s-1, respectively. The results suggest that, at room temperature, the three processed Al-6Mg alloys are all low sensitive to strain rate. The O state Al-6Mg alloy (Al-6Mg-O) exhibits the most ductility, while the cold-extruded Al-6Mg alloy (Al-6Mg-C) displays the highest strength. At elevated temperatures, the yield stresses and the differences in yield stress of the three processed alloys all decrease with increasing temperature under the quasi-static strain rate of 5×10-4 s-1. Based on test results, modified Johnson-Cook (JC) constitutive models for the three processed Al-6Mg alloys were developed. The microstructures before and after deformation were examined by electron backscattered diffraction (EBSD) and further dynamic recrystallization (DRX) at the strain rate of 3 300 s-1 was discussed.
文摘The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.
文摘Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.
基金supported by the National Natural Science Foundation of China(Grant number:50071060)the National Development Project for Basic Scientific Research(Grant number:G2000067201).
文摘The Mg65Cu25Y10 melts were quenched at a temperature of 973 K under various pressures in the range of 2-5 GPa and ambient pressure. The microstructure of the solidified specimens has been investigated by X-ray diffraction, transmission electron microscope and electron probe microanalysis. Experimental results show that the pressure has a great influence on the solidification microstructure of the Mg65Cu25Y10. At ambient pressure, the solidification products are Mg2(Cu,Y) and a very small amount of Y2O3 inclusion. As the pressure is above 2 GPa, a new Cu2(Y,Mg) phase appears, while Y2O3 is not observed at the pressure of 3, 4 and 5 GPa. When the pressure increases from 2 GPa to 5 GPa, the grain sizes of Mg2(Cu,Y) and Cu2(Y,Mg) decrease from 125, 96 nm to 80, 7 nm, respectively. The mechanisms for the effects of the pressure on the phase evolution and microstructure during solidification process of Mg65Cu25Y10 alloy have been discussed.
文摘Corrosion inhibition of Al and Al-3.5Mg alloy by organic compounds, namely chalcones in hydrochloric acid solutions has been investigated by rapid polarization technique and weight loss method. Polarization measurements show that, the inhibitors act cathodically both in case of Al and Al-3.5Mg alloy. It was found from the weight loss measurements that, the inhibition efficiency depends on the substituent in the chalcone compound. The relative inhibitive efficiency of these compounds has been explained on the basis of structure dependent electron donor properties of the inhibitors and the metal inhibitor interaction on the surface. The inhibition efficiency ranges from 16 to 64% for Al and from 30% to 91% for Al-3.5Mg alloy
基金financially supported by both the National Natural Science Foundation of China(No.50571073)the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic AI-25Si alloy, a new environmentally friendly AI-20.6Mn-12Ti-0.9P-6.1Cu (by wt.%) master alloy was fabricated; and its modification and strengthening mechanisms on the AI-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the AI-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as e-AI phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the AI-25Si alloys with the addition of 4wt.% AI-20.6Mn-12Ti- 0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 IJm (unmodified) to 13.83 pm and 35 IJm (unmodified) to 7 tim; the e-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ℃ reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic AI-25Si alloy.
文摘The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {0001}(1210) textures a {1210}(1010) texture and a {0001}(uvtw)fibre texture are formed after cold rolling. The {0001} (1210) texture is also strengthened simultaneously. The activation process of slip systems is discussed concerning formation of the rolling texture. Because of the disappearance of {0001} (nvtw) fibre texture the primary recrystallization process should occur and the {1210}(1010) texture forms during annealing
基金Projects (2010CB731700,2012CB619500) supported by the National Basic Research Program of China
文摘The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM).The results show that the tensile strength can be significantly improved with the slightly decreased ductility and the form of fracture morphology is converted from ductile fracture into ductile/britde mixed fracture by adding 1.0%Li.Besides,the peak aging time at 185 ℃ is delayed from 12 to 24 h and the main precipitation phase S(Al2CuMg) is converted into S'(Al2CuMg)+δ(Al3Li),while the formation of S'(Al2CuMg) is delayed.
基金financially supported by the National Natural Science Foundation of China (No.51274245)
文摘The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al–13Si–7.5Cu–1Mg alloy were investigated.The microstructures of alloys before and after conform processing and aging were compared by transmission electron microscopy and scanning electron microscopy,respectively.The results reveal that the primary phases were broken and refined by intense shear deformation during conform processing.After the conform-prepared Al–13Si–7.5Cu–1Mg alloy was subjected to solid-solution treatment at 494℃for 1.5 h and aging at 180℃for 4 h,its hardness improved from HBS 115.8 to HBS 152.5 and its ultimate tensile strength increased from 112.6 to 486.8 MPa.Its wear resistance was also enhanced.The factors leading to the enhanced strength,hardness,and wear resistance of the alloy were discussed in detail.