By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results sho...By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results show that the microstructure is refined after modification with Ti,which is related to the heterogeneous nucleation of TiAl_(3) particles on theα-Al matrix.With the increase of Ti content and holding time after stirring,the primary Mg_(2)Si phase is refined firstly and then coarsened,and correspondingly,the mechanical properties of the alloy show a trend of increasing at first and then decreasing.When the addition of Ti is 0.5wt.%and the holding time is about 20 min,the refinement effect of primary Mg_(2)Si phase is the most significant and the mechanical properties of the alloy are optimal.展开更多
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed i...In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth.展开更多
The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfer...The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfers from singleα-Mg phase,(α-Mg+β-Li)dual phase to singleβ-Li phase.A mixed corrosion feature of intergranular corrosion and pitting corrosion occurs in the Mg-4Li-3Al-2Zn-0.5Y and Mg-12Li-3Al-2Zn-0.5Y alloys.The former is related to the precipitated AlLi phase along the grain boundaries,and the latter is related to the high potential difference between the second phase and the matrix.The corrosion resistance of the as-extruded alloys is better than that of the as-homogenized alloys.The superior corrosion resistance of the as-extruded Mg-8Li-3Al-2Zn-0.5Y alloy with the lowest corrosion rate(P_(W)=(0.63±0.26)mm/a)is attributed to the more uniform distribution of second phases,the protectiveα-Mg phase via sacrificing theβ-Li phase and the relatively integrated oxide film.展开更多
PEO ceramic coatings including ZrO_2-Al_2O_3-SiO_2 in three phases were prepared on an Al-12.5%Si alloy in electrolyte solutions containing ZrO_2 nanoparticles. The microstructures and phases of the coatings were anal...PEO ceramic coatings including ZrO_2-Al_2O_3-SiO_2 in three phases were prepared on an Al-12.5%Si alloy in electrolyte solutions containing ZrO_2 nanoparticles. The microstructures and phases of the coatings were analyzed by SEM and XRD, and the heat insulation performance and the thermal shock resistance of the coatings were investigated. The compactness of the coating increased significantly and the hindrance of the Si element on plasma electrolytic oxidation process was effectively weakened. The growth rate of the coating was improved substantially with the addition of ZrO_2 nanoparticles. The PEO ceramic coatings are primarily composed of SiO_2 and high temperature steady phases such as a-Al_2O_3 and c-ZrO_2. Both the content of c-ZrO_2 and the heat-insulating property of the coating increased significantly. The ceramic coatings with special microstructure and composition formed in the solutions containing ZrO_2 nanoparticles possess excellent heat insulation performance and thermal shock resistance.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that...ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution.展开更多
The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of...The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of 0.01-10s 1.The critical conditions for the onset of DRX were attained when the value of d /d,where strain hardening rate d /d,reached the minimum which corresponds to an inflection of θ versus σ curve.Thus,two important potential parameters,critical strain and critical stress,were identified,and expressed as εc/εp=0.37-0.60,σc/σp=0.81-0.91.Furthermore,by the regression analysis for conventional hyperbolic sine equation,the main material parameters such as α,β,n,and DRX activation energy,Q,were calculated.In addition,the evolution of Q with strain rate and temperature was revealed as a 3D response surface.展开更多
Mg-6Al-2Sr alloys with different Sm contents(0%, 0.5%, 1%, 1.5%, 2%, mass fraction) were prepared by melting and casting method. The effects of Sm on the microstructure and mechanical properties of as-cast Mg-6Al-2Sr ...Mg-6Al-2Sr alloys with different Sm contents(0%, 0.5%, 1%, 1.5%, 2%, mass fraction) were prepared by melting and casting method. The effects of Sm on the microstructure and mechanical properties of as-cast Mg-6Al-2Sr alloys were studied by optical microscope, scanning electron microscope, energy dispersive spectrometer, transmission electron microscope, X-ray diffraction and tensile test. The results show that the microstructure of as-cast Mg-6Al-2Sr alloy is composed of α-Mg, Mg_(17)Al_(12), Mg_(13)Al_(3)Sr and lamellar acicular Al_(4)Sr phase. After adding Sm element, granular block Al2Sm phase appears in the grain. With the increase of Sm content, the discontinuous long strip reticular Mg_(17)Al_(12)phase and the lamellar acicular Al4Sr phase gradually decrease, and the Al_(2)Sm phase increases and distributes more dispersedly, so the alloy microstructure is continuously refined. The average grain size of the alloys decreases at first and then increases with the increase of Sm content. When the Sm content is 1.5 wt%, the average grain size reaches the minimum value of 94.6 μm. With the increase of Sm content, the mechanical properties of the alloy at room temperature first increase and then decrease. When the Sm content is 1.5 wt%, the alloy has the best comprehensive mechanical properties at room temperature.展开更多
The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 cer...The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 ceramic crucibles and water-cooled copper crucible) were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAI alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.展开更多
A novel thermal-protective coating has been successfully prepared by CPED process on a cast Al-12%Si alloy with the addition of ZrO2 nano-particles in the electrolyte. The microstructures and phase composition of the ...A novel thermal-protective coating has been successfully prepared by CPED process on a cast Al-12%Si alloy with the addition of ZrO2 nano-particles in the electrolyte. The microstructures and phase composition of the coatings were analyzed by SEM and XRD, and the heat insulation performance and the thermal shock resistance of the coatings were investigated. With ZrO2 nanoparticles addition, the cathode plasma discharge on the coating surface is more obvious than that without ZrO2 nanoparticles addition, the coating is more uniform and compact, and the thickness of the coating increases. Furthermore, the content of Zr and Y elements increases and the degree of crystallization of the coating is more complete. The formation of the solid solution of yttrium stabilized zirconia is promoted by cathode plasma discharge. In addition, the thermal insulation temperature increases as ZrO2 nano-particles are added to the electrolyte. After 1 000 cycles of thermal shock, there was no cracking in the coating surface layer, which indicated that the CPED coating with ZrO2 nanoparticles addition possessed a good thermal shock resistance.展开更多
Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc disc...Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc discharge channels of the Ti-2Al-2.5Zr alloy decrease while the discharge channel size increases clearly with an increase in treating time. With an increase of the coating thickness the porous layer thickness increases apparently. Phase composition of the surface layers of the coatings was evaluated by X-ray diffraction and X-ray photoelectron spectroscopy. The results of XRD and XPS analysis show that the MAO coating mainly consists of anatase and rutile TiO2.展开更多
The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to...The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to a true strain of 0.70 in the temperature range of 750-950°C and strain rate range of 0.001-10 s-1.The corresponding microstructures were observed by means of the metallurgical microscopy and scanning electron microscopy(SEM).It was found that all cavities occurred at the bulge regions of the compression specimens.Most of cavities nucleated along prior beta boundaries oriented 45°to the compression axis,while others nucleated at the interfaces of lamellar alpha colonies.Cavity nucleation was inhibited with increasing the volume fraction of beta phase and the volume fraction spheroidized of lamellar alpha phase.展开更多
Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through f...Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.展开更多
The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA)...The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.展开更多
To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy,the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed.The e...To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy,the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed.The experimental results show that the matrix phase of α-Mg dendrites is first generated at 596℃ during the solidification process,then the eutectic phases of Al_(2)Ca and Mg_(17)Al_(12) are formed at 518 and 447℃,respectively,and the solidification is terminated at 436℃.In the process of solidification,the seaweed dendrites of α-Mg get coarser and are gradually transformed into the global dendrites;besides,the secondary dendrite arms spacing(SDAS)of α-Mg as well as the solid fraction are both increased,while the increasing rate of SDAS of α-Mg and the solid fraction in the temperature region of 600-550℃ is faster than that in the temperature region of 550-436℃.And a power function relationship can be used to illustrate the change of the SDAS and the solid fraction with the temperature of solidification.展开更多
A γ-TiAl base alloy with the composition of Ti-34Al-2Mn(wt--%)was prepared by consum-able electrode arc-melting technique.The effect of homogenization processing following arc-melt-ing on its microstructure and mec...A γ-TiAl base alloy with the composition of Ti-34Al-2Mn(wt--%)was prepared by consum-able electrode arc-melting technique.The effect of homogenization processing following arc-melt-ing on its microstructure and mechanical properties was investigated.The emphases were placedon the microstructural evolution during solidification and homogenization,and the relationship be-tween microstructure and ductility.It has been determined that the samples annealed at 900℃for 20 h exhibit the best ductility compared with those treated at other temperatures up to 1100℃,and they have a mixed structure of equiaxed grain of γ-TiAl single phase and some prima-ry lamellar grains which include three types of interfaces,i.e.,α<sub>2</sub>/γ,/γ/γ<sub>S</sub>,γ/γ<sub>T</sub>,maintainingspecific orientaion relationships between both sides.The ductility improvement is believed to be as-sociated with existence of suitable amount of α<sub>2</sub>-Ti<sub>3</sub>Al phase and the refinement of grains ob-tained at 900℃.展开更多
Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a pe...Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2.展开更多
The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue cr...The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue crack initiation than the matrix at lower stress.展开更多
The dynamic recrystallization(DRX) behavior of Ti-6Al-2Zr-1Mo-1V alloy was investigated at deformation temperature of 1000-1100 °C and strain rate of 10-3-1.0 s-1 by using compression test.The results show that...The dynamic recrystallization(DRX) behavior of Ti-6Al-2Zr-1Mo-1V alloy was investigated at deformation temperature of 1000-1100 °C and strain rate of 10-3-1.0 s-1 by using compression test.The results show that discontinuous dynamic recrystallization(DDRX) is the predominant recrystallization mechanism at temperature higher than 1050 °C and strain rate lower than 0.01 s-1.Meanwhile,continuous dynamic recrystallization is the main mechanism observed at temperature below 1050 °C and strain rate above 0.01 s-1,mixed with a few DDRX grains.In addition,decreasing strain rate and increasing deformation temperature are found to facilitate the progress of DRX and refinement of grains in the Ti alloy in β forging process.展开更多
基金financially supported by the Science and Technology Development Program of Shouguang(No.2019JH14)the Science and Technology Development Program of Weifang(No.2021GX052)the Natural Science Foundation of Liaoning Province(No.080137)。
文摘By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results show that the microstructure is refined after modification with Ti,which is related to the heterogeneous nucleation of TiAl_(3) particles on theα-Al matrix.With the increase of Ti content and holding time after stirring,the primary Mg_(2)Si phase is refined firstly and then coarsened,and correspondingly,the mechanical properties of the alloy show a trend of increasing at first and then decreasing.When the addition of Ti is 0.5wt.%and the holding time is about 20 min,the refinement effect of primary Mg_(2)Si phase is the most significant and the mechanical properties of the alloy are optimal.
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.
基金Project(2016YFB0301105)supported by the National Key Research and Development Plan,ChinaProject(ZR2015YL007)supported by the Natural Science Foundation of Shandong Province,ChinaProject(ZR2015EQ019)supported by the Natural Science Foundation of Shandong Province,China
文摘In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth.
基金financially supported by the National Natural Science Foundation of China(Nos.51771115,51775334,51821001,U2037601)Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment(No.SKL2020005)。
文摘The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfers from singleα-Mg phase,(α-Mg+β-Li)dual phase to singleβ-Li phase.A mixed corrosion feature of intergranular corrosion and pitting corrosion occurs in the Mg-4Li-3Al-2Zn-0.5Y and Mg-12Li-3Al-2Zn-0.5Y alloys.The former is related to the precipitated AlLi phase along the grain boundaries,and the latter is related to the high potential difference between the second phase and the matrix.The corrosion resistance of the as-extruded alloys is better than that of the as-homogenized alloys.The superior corrosion resistance of the as-extruded Mg-8Li-3Al-2Zn-0.5Y alloy with the lowest corrosion rate(P_(W)=(0.63±0.26)mm/a)is attributed to the more uniform distribution of second phases,the protectiveα-Mg phase via sacrificing theβ-Li phase and the relatively integrated oxide film.
基金Funded by the National Natural Science Foundation of China(Nos.51401155 and 51771140)Key Research and Development Plan in Shaanxi(No.2018GY-111)+1 种基金Shaanxi Provincial Department of Education Industrialization Cultivation Project(No.17JF009)Yulin Science and Technology Project(No.2016-16-4)and Shaanxi Science and Technology Co-ordination Innovation Project(No.2016KTZDGY-04-01)
文摘PEO ceramic coatings including ZrO_2-Al_2O_3-SiO_2 in three phases were prepared on an Al-12.5%Si alloy in electrolyte solutions containing ZrO_2 nanoparticles. The microstructures and phases of the coatings were analyzed by SEM and XRD, and the heat insulation performance and the thermal shock resistance of the coatings were investigated. The compactness of the coating increased significantly and the hindrance of the Si element on plasma electrolytic oxidation process was effectively weakened. The growth rate of the coating was improved substantially with the addition of ZrO_2 nanoparticles. The PEO ceramic coatings are primarily composed of SiO_2 and high temperature steady phases such as a-Al_2O_3 and c-ZrO_2. Both the content of c-ZrO_2 and the heat-insulating property of the coating increased significantly. The ceramic coatings with special microstructure and composition formed in the solutions containing ZrO_2 nanoparticles possess excellent heat insulation performance and thermal shock resistance.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金Funded by the National Natural Science Foundation of China(No.51401155)the School Foundation(No.XAGDXJJ1012)The Open Fund of Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices(No.ZSKJ201416)
文摘ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution.
基金Project(2012ZX04010081)supported by the National Key Technologies R&D Program of ChinaProject(cstc2009aa3012-1)supported by the Science and Technology Committee of Chongqing,ChinaProject(CDJZR12130045)supported by the Fundamental Research Funds for the Central Universities,China
文摘The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of 0.01-10s 1.The critical conditions for the onset of DRX were attained when the value of d /d,where strain hardening rate d /d,reached the minimum which corresponds to an inflection of θ versus σ curve.Thus,two important potential parameters,critical strain and critical stress,were identified,and expressed as εc/εp=0.37-0.60,σc/σp=0.81-0.91.Furthermore,by the regression analysis for conventional hyperbolic sine equation,the main material parameters such as α,β,n,and DRX activation energy,Q,were calculated.In addition,the evolution of Q with strain rate and temperature was revealed as a 3D response surface.
基金Project(51975167) supported by the National Natural Science Foundation,China。
文摘Mg-6Al-2Sr alloys with different Sm contents(0%, 0.5%, 1%, 1.5%, 2%, mass fraction) were prepared by melting and casting method. The effects of Sm on the microstructure and mechanical properties of as-cast Mg-6Al-2Sr alloys were studied by optical microscope, scanning electron microscope, energy dispersive spectrometer, transmission electron microscope, X-ray diffraction and tensile test. The results show that the microstructure of as-cast Mg-6Al-2Sr alloy is composed of α-Mg, Mg_(17)Al_(12), Mg_(13)Al_(3)Sr and lamellar acicular Al_(4)Sr phase. After adding Sm element, granular block Al2Sm phase appears in the grain. With the increase of Sm content, the discontinuous long strip reticular Mg_(17)Al_(12)phase and the lamellar acicular Al4Sr phase gradually decrease, and the Al_(2)Sm phase increases and distributes more dispersedly, so the alloy microstructure is continuously refined. The average grain size of the alloys decreases at first and then increases with the increase of Sm content. When the Sm content is 1.5 wt%, the average grain size reaches the minimum value of 94.6 μm. With the increase of Sm content, the mechanical properties of the alloy at room temperature first increase and then decrease. When the Sm content is 1.5 wt%, the alloy has the best comprehensive mechanical properties at room temperature.
文摘The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 ceramic crucibles and water-cooled copper crucible) were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAI alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.
基金Funded by the Youth Innovation Team of Shaanxi Universities,Shaanxi Key Research and Development Program(No.2018GY-111)Shaanxi Provincial Department of Education Industrialization Cultivation Project(No.17JF009)Yulin Science and Technology Project(Nos.2016-16-4 and 2018-2-30)
文摘A novel thermal-protective coating has been successfully prepared by CPED process on a cast Al-12%Si alloy with the addition of ZrO2 nano-particles in the electrolyte. The microstructures and phase composition of the coatings were analyzed by SEM and XRD, and the heat insulation performance and the thermal shock resistance of the coatings were investigated. With ZrO2 nanoparticles addition, the cathode plasma discharge on the coating surface is more obvious than that without ZrO2 nanoparticles addition, the coating is more uniform and compact, and the thickness of the coating increases. Furthermore, the content of Zr and Y elements increases and the degree of crystallization of the coating is more complete. The formation of the solid solution of yttrium stabilized zirconia is promoted by cathode plasma discharge. In addition, the thermal insulation temperature increases as ZrO2 nano-particles are added to the electrolyte. After 1 000 cycles of thermal shock, there was no cracking in the coating surface layer, which indicated that the CPED coating with ZrO2 nanoparticles addition possessed a good thermal shock resistance.
基金the National Key Laboratory for Nuclear Fuel and Materials,Nuclear Power Institute of China the Program for New Century Excellent Talents in Chinese University.
文摘Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc discharge channels of the Ti-2Al-2.5Zr alloy decrease while the discharge channel size increases clearly with an increase in treating time. With an increase of the coating thickness the porous layer thickness increases apparently. Phase composition of the surface layers of the coatings was evaluated by X-ray diffraction and X-ray photoelectron spectroscopy. The results of XRD and XPS analysis show that the MAO coating mainly consists of anatase and rutile TiO2.
基金Project(2009ZE56014)supported by the Aeronautical Science Foundation of ChinaProject(gf200901008)supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,China
文摘The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to a true strain of 0.70 in the temperature range of 750-950°C and strain rate range of 0.001-10 s-1.The corresponding microstructures were observed by means of the metallurgical microscopy and scanning electron microscopy(SEM).It was found that all cavities occurred at the bulge regions of the compression specimens.Most of cavities nucleated along prior beta boundaries oriented 45°to the compression axis,while others nucleated at the interfaces of lamellar alpha colonies.Cavity nucleation was inhibited with increasing the volume fraction of beta phase and the volume fraction spheroidized of lamellar alpha phase.
文摘Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.
基金Project(2007430028) supported by the Science and Technique Foundation of Henan Educational Committee, China
文摘The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.
基金Funded by the Ph D Research Startup Foundation of Jining University(No.2017BSZX02)。
文摘To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy,the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed.The experimental results show that the matrix phase of α-Mg dendrites is first generated at 596℃ during the solidification process,then the eutectic phases of Al_(2)Ca and Mg_(17)Al_(12) are formed at 518 and 447℃,respectively,and the solidification is terminated at 436℃.In the process of solidification,the seaweed dendrites of α-Mg get coarser and are gradually transformed into the global dendrites;besides,the secondary dendrite arms spacing(SDAS)of α-Mg as well as the solid fraction are both increased,while the increasing rate of SDAS of α-Mg and the solid fraction in the temperature region of 600-550℃ is faster than that in the temperature region of 550-436℃.And a power function relationship can be used to illustrate the change of the SDAS and the solid fraction with the temperature of solidification.
基金Supported by National Advanced Materials Committee of China
文摘A γ-TiAl base alloy with the composition of Ti-34Al-2Mn(wt--%)was prepared by consum-able electrode arc-melting technique.The effect of homogenization processing following arc-melt-ing on its microstructure and mechanical properties was investigated.The emphases were placedon the microstructural evolution during solidification and homogenization,and the relationship be-tween microstructure and ductility.It has been determined that the samples annealed at 900℃for 20 h exhibit the best ductility compared with those treated at other temperatures up to 1100℃,and they have a mixed structure of equiaxed grain of γ-TiAl single phase and some prima-ry lamellar grains which include three types of interfaces,i.e.,α<sub>2</sub>/γ,/γ/γ<sub>S</sub>,γ/γ<sub>T</sub>,maintainingspecific orientaion relationships between both sides.The ductility improvement is believed to be as-sociated with existence of suitable amount of α<sub>2</sub>-Ti<sub>3</sub>Al phase and the refinement of grains ob-tained at 900℃.
文摘Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2.
文摘The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue crack initiation than the matrix at lower stress.
基金Project (2007CB613803) supported by the National Basic Research Program of ChinaProject (2010GQC0170) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (GJJ11159) supported by the Educational Committee of Jiangxi Province,China
文摘The dynamic recrystallization(DRX) behavior of Ti-6Al-2Zr-1Mo-1V alloy was investigated at deformation temperature of 1000-1100 °C and strain rate of 10-3-1.0 s-1 by using compression test.The results show that discontinuous dynamic recrystallization(DDRX) is the predominant recrystallization mechanism at temperature higher than 1050 °C and strain rate lower than 0.01 s-1.Meanwhile,continuous dynamic recrystallization is the main mechanism observed at temperature below 1050 °C and strain rate above 0.01 s-1,mixed with a few DDRX grains.In addition,decreasing strain rate and increasing deformation temperature are found to facilitate the progress of DRX and refinement of grains in the Ti alloy in β forging process.