A hypereutectic Al-50 wt%Si alloy for electronic packaging was prepared by spark plasma sintering(SPS)technology using gas-atomized Al-50 wt%Si powder.The effect of sintering parameters on alloy phase composition,micr...A hypereutectic Al-50 wt%Si alloy for electronic packaging was prepared by spark plasma sintering(SPS)technology using gas-atomized Al-50 wt%Si powder.The effect of sintering parameters on alloy phase composition,microstructure,thermal performance and the tensile strength at different temperatures was investigated.The experimental results show that the alloy can obey the diffraction peaks of silicon and aluminum without other peaks appearing.The primary silicon in the prepared alloy can be evenly distributed in the aluminum matrix.The coefficient of thermal expansion(CTE)and thermal conductivity(TC)of the alloy will improve with the increase of sintering temperature,but they will decrease after sintering for a long time,which is caused by the large difference of coefficient of thermal expansion between silicon and aluminum.The tensile properties of the alloy at room temperature will increase with the increase of sintering temperature,but higher test temperatures will inhibit the tensile properties except the elongation.The morphology and fracture mode of the tensile fracture are also analyzed to determine the good bonding strength of the alloy.展开更多
Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,...Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.展开更多
基金the Shanxi Key Laboratory of Nano-materials and Technology,China(Nos.18JS060,17JS075)。
文摘A hypereutectic Al-50 wt%Si alloy for electronic packaging was prepared by spark plasma sintering(SPS)technology using gas-atomized Al-50 wt%Si powder.The effect of sintering parameters on alloy phase composition,microstructure,thermal performance and the tensile strength at different temperatures was investigated.The experimental results show that the alloy can obey the diffraction peaks of silicon and aluminum without other peaks appearing.The primary silicon in the prepared alloy can be evenly distributed in the aluminum matrix.The coefficient of thermal expansion(CTE)and thermal conductivity(TC)of the alloy will improve with the increase of sintering temperature,but they will decrease after sintering for a long time,which is caused by the large difference of coefficient of thermal expansion between silicon and aluminum.The tensile properties of the alloy at room temperature will increase with the increase of sintering temperature,but higher test temperatures will inhibit the tensile properties except the elongation.The morphology and fracture mode of the tensile fracture are also analyzed to determine the good bonding strength of the alloy.
基金Project(18JS060) supported by the Shaanxi Key Laboratory of Nano-materials and Technology,ChinaProject(2018JQ5087) supported by Natural Science Basic Research Plan of Shaanxi Province,China。
文摘Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.