In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed i...In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth.展开更多
The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and...The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.展开更多
The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate ...The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.展开更多
The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transitio...The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transition regions appear at grain boundaries,the twin bounda- ries damage.Furthermore,the microstructure also gives the appearance and growth of antiphase domains like rectangular network.The long period antiphuse boundary structures and the antiphase domains have bee.observed first at the single diffracted vector .The con- centration gradient of solute atom Al has heen found from the matrixes to the grain bounda- ries,the matrixe is poor in Al and the grain boundaries are rich in Al.展开更多
The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue cr...The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue crack initiation than the matrix at lower stress.展开更多
Liquid structure of molten pure Cu, Cu-12Al, Cu-12Al-4Ni (mass fraction, %) alloys has been investigated using the X-ray diffraction method. It is found that the main peak of the structure factor of pure Cu is symmetr...Liquid structure of molten pure Cu, Cu-12Al, Cu-12Al-4Ni (mass fraction, %) alloys has been investigated using the X-ray diffraction method. It is found that the main peak of the structure factor of pure Cu is symmetrical. In the front of main peak, the curve takes on a shape of parabola, whereas a distinct pre-peak has been found around a scattering vector magnitude of 18.5 nm-1 in the structure factor of the liquid Cu-12Al alloy. This pre-peak increases its inten-sity with the addition of Ni in the liquid Cu-12Al-4Ni alloy. The appearance of a pre-peak is a mark of the mediate-range order. Based on Daken-Gurry theory and according to mu-tual interaction between unlike atoms, the analysis of corre-lation between different composition and liquid structure was done: the strong interaction exists between Cu and Ni, so Cu-Al can form strong chemical bond which causes compound-forming behavior. Therefore, the medium-range size clusters can form in melt. The presence of the pre-peak corresponds to these展开更多
基金Project(2016YFB0301105)supported by the National Key Research and Development Plan,ChinaProject(ZR2015YL007)supported by the Natural Science Foundation of Shandong Province,ChinaProject(ZR2015EQ019)supported by the Natural Science Foundation of Shandong Province,China
文摘In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth.
基金Project(51274245) supported by the National Natural Science Foundation of China
文摘The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.
基金Projected(51775068)supported by the National Natural Science Foundation of China.
文摘The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.
文摘The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transition regions appear at grain boundaries,the twin bounda- ries damage.Furthermore,the microstructure also gives the appearance and growth of antiphase domains like rectangular network.The long period antiphuse boundary structures and the antiphase domains have bee.observed first at the single diffracted vector .The con- centration gradient of solute atom Al has heen found from the matrixes to the grain bounda- ries,the matrixe is poor in Al and the grain boundaries are rich in Al.
文摘The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue crack initiation than the matrix at lower stress.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50071028) the Natural Science Foundation of Shandong Province (Grant No. Z99F01).
文摘Liquid structure of molten pure Cu, Cu-12Al, Cu-12Al-4Ni (mass fraction, %) alloys has been investigated using the X-ray diffraction method. It is found that the main peak of the structure factor of pure Cu is symmetrical. In the front of main peak, the curve takes on a shape of parabola, whereas a distinct pre-peak has been found around a scattering vector magnitude of 18.5 nm-1 in the structure factor of the liquid Cu-12Al alloy. This pre-peak increases its inten-sity with the addition of Ni in the liquid Cu-12Al-4Ni alloy. The appearance of a pre-peak is a mark of the mediate-range order. Based on Daken-Gurry theory and according to mu-tual interaction between unlike atoms, the analysis of corre-lation between different composition and liquid structure was done: the strong interaction exists between Cu and Ni, so Cu-Al can form strong chemical bond which causes compound-forming behavior. Therefore, the medium-range size clusters can form in melt. The presence of the pre-peak corresponds to these