The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipit...The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.展开更多
For quenching of age hardenable aluminium alloys today predominantly aqueous quenching media are used, which can lead due to the Leidenfrost phenomenon to a non-uniform cooling of the parts and thus to thermal stresse...For quenching of age hardenable aluminium alloys today predominantly aqueous quenching media are used, which can lead due to the Leidenfrost phenomenon to a non-uniform cooling of the parts and thus to thermal stresses. Particularly at thin-walled or complex shaped parts local plastic deformations can occur by the uneven thermal stresses. In relation to the conventional quenching procedures in aqueous media, gas quenching exhibits a number of technological, ecological and economical advantages. In comparison to liquid quenching media, gas does not change its phase during quenching. Moreover, the cleaning problem of the parts can be avoided. The quenching intensity can be adjusted by the variable parameters gas pressure and gas speed as well as the kind of gas and thus can be adapted to the requirements of the alloy. By the higher uniformity and the better reproducibility, gas quenching offers a high potential to reduce distortion. The goal of these investigations is to clarify, if the cooling rate during gas quenching is sufficient to obtain the specific required strength after age hardening of the alloy Al-7Si-0.3Mg. For this purpose different tests in high-pressure gas quenching facilities, gas nozzle fields and water quenching baths were performed.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。
文摘The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.
文摘For quenching of age hardenable aluminium alloys today predominantly aqueous quenching media are used, which can lead due to the Leidenfrost phenomenon to a non-uniform cooling of the parts and thus to thermal stresses. Particularly at thin-walled or complex shaped parts local plastic deformations can occur by the uneven thermal stresses. In relation to the conventional quenching procedures in aqueous media, gas quenching exhibits a number of technological, ecological and economical advantages. In comparison to liquid quenching media, gas does not change its phase during quenching. Moreover, the cleaning problem of the parts can be avoided. The quenching intensity can be adjusted by the variable parameters gas pressure and gas speed as well as the kind of gas and thus can be adapted to the requirements of the alloy. By the higher uniformity and the better reproducibility, gas quenching offers a high potential to reduce distortion. The goal of these investigations is to clarify, if the cooling rate during gas quenching is sufficient to obtain the specific required strength after age hardening of the alloy Al-7Si-0.3Mg. For this purpose different tests in high-pressure gas quenching facilities, gas nozzle fields and water quenching baths were performed.