期刊文献+
共找到8,060篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of Ultra Fine Glass Powder on the Properties and Microstructure of Mortars
1
作者 Wei Chen Dingdan Liu Yue Liang 《Fluid Dynamics & Materials Processing》 EI 2024年第5期915-938,共24页
This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali acti... This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali activation was considered to ameliorate the reactivity and cementitious properties,which were assessed by using scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),and specific surface area pore size distribution analysis.According to the results,without the addition of alkali activators,the performance of glass powder mortar decreases as the amount of glass powder increases,affecting various aspects such as strength and resistance to gas permeability.Only 5%glass powder mortar demonstrated a compressive strength at 60 days higher than that of the control group.However,adding alkali activator(CaO)during hydration ameliorated the hydration environment,increased the alkalinity of the composite system,activated the reactivity of glass powder,and enhanced the interaction of glass powder and pozzolanic reaction.In general,compared to ordinary cement mortar,alkali-activated glass powder mortar produces more hydration products,showcases elevated density,and exhibits improved gas resistance.Furthermore,alkali-activated glass powder mortar demonstrates an improvement in performance across various aspects as the content increases.At a substitution rate of 15%,the glass powder mortar reaches its optimal levels of strength and resistance to gas permeability,with a compressive strength increase ranging from 28.4%to 34%,and a gas permeation rate reduction between 51.8%and 66.7%. 展开更多
关键词 mortar waste glass powder alkali activation compressive strength gas permeability pore structure
下载PDF
Diversity and Importance of Benin’s Forests and Agroforestry Systems Woody Species in Mortars and Pestles Manufacture
2
作者 Menson Richard Somanin Baba Kayodé Eben-Ezer Ewedje +4 位作者 Akossibe Ismaël Batcho Ezin Paul Ogan Augustin Orou Matilo Cossi Aristide Adomou Hounnakpon Yedomonhan 《Open Journal of Forestry》 2023年第1期45-60,共16页
The disappearance of resources with high genetic potential and great utility for people and the challenge of the conservation and sustainable management of these resources are two opposing facts of which the world is ... The disappearance of resources with high genetic potential and great utility for people and the challenge of the conservation and sustainable management of these resources are two opposing facts of which the world is now concerned. In Benin, forests and agroforestry systems complement each other in wood supply for mortar and pestle manufacture. Thus, this study aimed to investigate the diversity of woody species used for mortar and pestle manufacture and to analyze the preferences of manufacturers through an ethnobotanical approach. Based on the snowball sampling method, and interviews with 112 manufacturers from different ethnic groups, we identified 31 tree species. These species belong to 30 genera and 13 plant families. The Fabaceae are more represented with 14 species (i.e. 45% of the total). Ten are frequently used. But there are four species, such as Vitellaria paradoxa C. F. Gaertn., Prosopis africana (Guill. & Perr.) Taub., Terminalia glaucescens Planch. ex Benth. and Pericopsis laxiflora (Benth.) Meeuwen, which are highly preferred by manufacturers respectively. The calculation of the Indexes of Possession of Global Knowledge (IPSG) revealed that the ethnic group Nagot (0.204) possessed more knowledge and is followed by Mahi (0.201) and Fon (0.18) respectively. Forests and agroforestry systems are both supply sites for manufacturers. The non-parametric Wilcoxon test proved that there are no significant differences between the species’ preference for mortars or pestles manufacture (v = 181, p-value = 0.38). Since the trees cutting in agroforestry systems can be destructive to them, provisions such as the promotion of agroforestry in rural areas and the integration of the used species in the reforestations programs must be taken to curb the pressure and contribute to the conservation of the biodiversity. 展开更多
关键词 Agroforestry Systems BENIN DIVERSITY Forest mortars and Pestles USES Woody Species
下载PDF
Evolution of Biofilm and Its Effect on Microstructure of Mortar Surfaces in Simulated Seawater
3
作者 荣辉 YU Chenglong 张颖 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期234-243,共10页
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru... To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater. 展开更多
关键词 biofilm attachment mortar sulfur-oxidizing bacteria GYPSUM simulated seawater MICROSTRUCTURE
下载PDF
An Investigation into the Performances of Cement Mortar Incorporating Superabsorbent Polymer Synthesized with Kaolin
4
作者 Xiao Huang Jin Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1393-1406,共14页
Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to i... Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP. 展开更多
关键词 Superabsorbent polymer KAOLIN cement mortar rheological behavior autogenous shrinkage
下载PDF
Analysis of Calcined Red Mud Properties and Related Mortar Performances
5
作者 Zhengfan Lyu Yulin Li +2 位作者 Mengmeng Fan Yan Huang Chenguang Li 《Fluid Dynamics & Materials Processing》 EI 2024年第5期901-913,共13页
Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed usi... Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy.The performance of calcined red mud was determined through mortar strength tests.Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud,and increase the surface roughness and specific surface area.At the optimal temperature of 700°C,the addition of calcined red mud still leads to a decrease in mortar strength,but its activity index and flexural coefficient increase by 16.2%and 11.9%with respect to uncalcined red mud,reaching values of 0.826 and 0.974,respectively.Compared with the control group,the synergistic activation of calcined red mud with slag can increase the compressive and flexural strength of the mortar by 12.9%and 1.5%,reaching 8.7 and 62.4 MPa,respectively.Correspondingly,the activity index and flexural coefficient of the calcined RM and GGBS(Ground Granulated Blast furnace Slag)mixtures also increase to 1.015 and 1.130,respectively. 展开更多
关键词 Red mud SLAG thermal activation synergistic activation mortar test microscopic properties
下载PDF
Effect of Partial Replacement of Fly Ash by Decoration Waste Powder on the Fresh and Mechanical Properties of Geopolymer Masonry Mortar
6
作者 刘惠 ZHANG Ruidong +2 位作者 朱平华 WANG Xinjie CHEN Chunhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期698-704,共7页
This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP re... This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability. 展开更多
关键词 fly ash-based geopolymer decoration waste powder masonry mortar WORKABILITY compressive strength
下载PDF
Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar
7
作者 Yadong Bian Xuan Qiu +2 位作者 Jihui Zhao Zhong Li Jiana Ouyang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期45-58,共14页
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero... In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar. 展开更多
关键词 Recycled concrete fine powder cement mortar CARBONIZATION SULFATE chloride ion DURABILITY
下载PDF
Study on physical and mechanical properties of cement asphalt emulsified mortar under track slab
8
作者 Tao Wang Shaoliang Wu +5 位作者 Hengqiong Jia Shanqing Peng Haiyan Li Piyan Shao Zhao Wei Yi Shi 《Railway Sciences》 2024年第2期227-238,共12页
Purpose–During the construction process of the China Railway Track System(CRTS)I type filling layer,the nonwoven fabric bags have been used as grouting templates for cement asphalt(CA)emulsified mortar.The porous str... Purpose–During the construction process of the China Railway Track System(CRTS)I type filling layer,the nonwoven fabric bags have been used as grouting templates for cement asphalt(CA)emulsified mortar.The porous structure of nonwoven fabrics endowed the templates with breathability and water permeability.The standard requires that the volume expansion rate of CA mortar must be controlled within 1%–3%,which can generate expansion pressure to ensure that the cavities under track slabs are filled fully.However,the expansion pressure caused some of the water to seep out from the periphery of the filling bag,and it would affect the actual mix proportion of CA mortar.The differences in physical and mechanical properties between the CA mortar under track slabs and the CA mortar formed in the laboratory were studied in this paper.The relevant results could provide important methods for the research of filling layer materials for CRTS I type and other types of ballastless tracks in China.Design/methodology/approach–During the inspection of filling layer,the samples of CA mortar from different working conditions and raw materials were taken by uncovering the track slabs and drilling cores.The physical and mechanical properties of CA mortar under the filling layer of the slab were systematically analyzed by testing the electrical flux,compressive strength and density of mortar in different parts of the filling layer.Findings–In this paper,the electric flux,the physical properties and mechanical properties of different parts of CA mortar under the track slab were investigated.The results showed that the density,electric flux and compressive strength of CA mortar were affected by the composition of raw materials for dry powders and different parts of the filling layer.In addition,the electrical flux of CA mortar gradually decreased within 90 days’age.The electrical flux of samples with the thickness of 54 mm was lower than 500 C.Therefore,the impermeability and durability of CA mortar could be improved by increasing the thickness of filling layer.Besides,the results showed that the compressive strength of CA mortar increased,while the density and electric flux decreased gradually,with the prolongation of hardening time.Originality/value–During 90 days’age,the electrical flux of the CA mortar gradually decreased with the increase of specimen thickness and the electrical flux of the specimens with the thickness of 54 mm was lower than 500 C.The impermeability and durability of the CA mortar could be improved by increasing the thickness of filling layer.The proposed method can provide reference for the further development and improvement of CRTS I and CRTS II type ballastless track in China. 展开更多
关键词 CA mortar Electric flux Compressive strength DENSITY
下载PDF
Substitution of Aggregates in Concrete and Mortar with Coltan Mining Waste: Mechanical, Environmental, and Economic Impact Case Study
9
作者 Alinabiwe Nyamuhanga Ally Élodie Ruffine Zang +5 位作者 Masika Muhiwa Grâce Manjia Marcelline Blanche Ursula Joyce Merveilles Pettang Nana Ngapgue François Bella Nabil Chrispin Pettang 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期139-163,共25页
The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechani... The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete;reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint. 展开更多
关键词 AGGREGATE Coltan Mining Waste CONCRETE mortar Mechanical Strength Life Cycle Analysis
下载PDF
The Effect of Graphene Oxide on Mechanical Properties of Cement Mortar
10
作者 Lei FAN Jinhao ZHENG 《Research and Application of Materials Science》 2024年第1期1-4,共4页
Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural str... Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials. 展开更多
关键词 Graphene oxide Cement mortar Mechanical properties Microscopic analysis
下载PDF
Influence of the Steel-making Dust on High Temperature and Fatigue Performance of Asphalt Mortars 被引量:2
11
作者 宋亮 WANG Xuancang +2 位作者 LI Xiaotong 杨群 WANG Peng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期361-367,共7页
To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, finene... To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, fineness modulus and mineralogy component of the dusts were tested. Scanning electron microscopy(SEM) was carried out to research the microstructure of the dusts; dynamic shear rheological(DSR) test and time sweep test were used to research the high temperature and fatigue performance of asphalt mortars containing steel-making dust. The experimental results indicate that, compared with ordinary mineral filler, steel-making dusts have more active ingredients, difference surface characteristics and micro-structure. Furthermore, the high temperature and fatigue performance of steel-making dusts corresponding asphalt mortars are superior to those of reference group. Therefore, the steel-making dust would be an alternative to the ordinary mineral filler to improve the performance of asphalt mortars and reduce the harm of the dusts to the environment at the same time. 展开更多
关键词 steel-making DUST ASPHALT mortars high-temperature PERFORMANCE FATIGUE PERFORMANCE
下载PDF
The Properties of Cement Mortars Modified by Emulsified Epoxy and Micro-fine Slag 被引量:2
12
作者 陈友治 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第3期83-85,共3页
The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro fine slag.The microstructure of the epoxy resin polymer cemen... The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro fine slag.The microstructure of the epoxy resin polymer cement materials was studied and their hydration and hardening characteristics were discussed by means of modern analysis measures such as SEM,XRD and Hg intrusion micromeritics.The experimental results indicate that the series effects of water reducing,density,pozzolanicity,filling and solidification crosslinking through the action together with epoxy organism and micro fine slag endowed cement based materials with perfect performances.The main hydration products in the system are C S H gel and hydrated calcium aluminate.At later age,AFt can be in existence,and no Ca(OH) 2 is found.When epoxy resin is solidified,the organism is in a network structure.In the micro pore structure of hydrated cement with modified epoxy and fine slag,big harmful pores were fewer,more harmless abundant micro pores were and the possible pore radius was smaller than that of ordinary Portland cement. 展开更多
关键词 emulsified epoxy modification cement mortar HYDRATION HARDENING
下载PDF
Synthesis and Application of Sodium-carboxymethylcellulose Type Superplasticizer in Cement Mortars 被引量:1
13
作者 吕高磊 韩福芹 SUN Kaimeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期811-817,共7页
The polymeric admixture, the sodium-carboxymethylcellulose(CMC)/poly sodium p-styrene sulfonate(PSS)/poly vinyl acetate(PVAc) was synthesized and applied in cement mortars. The polymer was tested by FTIR and SEM, and ... The polymeric admixture, the sodium-carboxymethylcellulose(CMC)/poly sodium p-styrene sulfonate(PSS)/poly vinyl acetate(PVAc) was synthesized and applied in cement mortars. The polymer was tested by FTIR and SEM, and the results indicate that the ideal molecular structure is synthesized. The effect of addition amount of polymeric admixture and water-to-cement ratio on mechanical properties of cement mortars was studied. The polymer-modified mortars under the optimum water cement ratio and optimum polymer cement ratio, the flexural strength of polymer-modified mortars are 1.45, 1.21, and 1.17 times higher than the plain cement mortar at age of 3, 7, and 28 d, respectively.The compressive strength of polymer-modified mortars at age of 3, 7, and 28 d are 1.55, 1.40, and 1.2941 times higher than that of the plain cement mortar,respectively. Scanning electron microscope(SEM), FTIR and TG were used to analyze the effect of polymer emulsion on cement hydration reaction. The results show that the polymer emulsion can promote the hydration reaction of cement. 展开更多
关键词 CELLULOSE cement mortar mechanical properties THERMOGRAVIMETRIC analysis(TGA)
下载PDF
Optimization of Blended Mortars Using Steel Slag Sand 被引量:1
14
作者 陈美祝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期741-744,共4页
A new kind of mortar made of ground granulated blast-furnace slag (GGBFS), gypsum, clinker and steel slag sand (〈4.75 mm) was developed. The ratio of steel slag sand to GGBFS was 1 : 1 and the amount of gypsum w... A new kind of mortar made of ground granulated blast-furnace slag (GGBFS), gypsum, clinker and steel slag sand (〈4.75 mm) was developed. The ratio of steel slag sand to GGBFS was 1 : 1 and the amount of gypsum was 4% by weight while the dosage of clinker ranged from 0% to 24%. The optimization formulation of such mortar was studied. The content of steel slag sand should be less than 50% according to the volume stability of blended mortar, and the dosage of clinker is about 10% based on the strength development. Besides strength, the hydration heat, pore structure and micro pattern of blended mortar were also determined. The experimental results show the application of steel slag sand may reduce the dosage of cement clinker and increase the content of industrial waste product such as GGBFS, and the clinker is also a better admixture for blended mortar using steel slag sand. 展开更多
关键词 steel slag sand cement clinker GGBFS GYPSUM blended mortar
下载PDF
Dynamic Mechanical Characterizations and Road Performances of Flame Retardant Asphalt Mortars and Concretes 被引量:1
15
作者 秦先涛 ZHU Siyue +1 位作者 LI Zuzhong CHEN Shuanfa 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1036-1042,共7页
To research the dynamic mechanical properties and road performances of flame retardant asphalt mortars and mixtures, four different asphalt mortars/mixtures were prepared: a reference group and three asphalt mortars/m... To research the dynamic mechanical properties and road performances of flame retardant asphalt mortars and mixtures, four different asphalt mortars/mixtures were prepared: a reference group and three asphalt mortars/mixtures containing composite flame retardant materials(M-FRs) of different proportions. Temperature sweep, frequency sweep, repeated creep test, force ductility test and bending beam rheological test were carried out to research the dynamic mechanical properties of asphalt mortars containing M-FRs; wheeltracking test, low-temperature bending test and freeze-thaw split test were used to study the road performances of asphalt mixtures containing M-FRs. The results show that high-temperature performances of the three flame retardant asphalt mortars improve greatly, while low-temperature cracking resistances decline. Both hightemperature performances and water stabilities of asphalt mixtures containing M-FRs are quite good and exceed the specification requirements. However, their low-temperature performances decline in different degrees. In summary, besides their good flame retardancy, the flame retardant asphalt mortars and mixtures also exhibit acceptable road performance. 展开更多
关键词 asphalt mortar asphalt mixture composite flame retardant materials dynamic mechanical characterization road performance
下载PDF
Study of the Mechanical Behaviour of Mortars Modified with Rice Husk Ash 被引量:1
16
作者 Issiaka Sanou Moustapha Sawadogo +2 位作者 Mohamed Seynou Lamine Zerbo Raguilnaba Ouedraogo 《Journal of Minerals and Materials Characterization and Engineering》 2019年第6期373-384,共12页
The purpose of this work is to study the influence of Rice Husk Ash (RHA) on the mechanical strength of mortars. For this purpose, ash was produced by calcining rice husk at 680&deg;C for 5 hours to produce reacti... The purpose of this work is to study the influence of Rice Husk Ash (RHA) on the mechanical strength of mortars. For this purpose, ash was produced by calcining rice husk at 680&deg;C for 5 hours to produce reactive pozzolan. The chemical and mineralogical composition studied by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and X-Ray Diffraction (XRD) showed that this ash is rich in amorphous silica. The ash presents a good pozzolanic activity with a lime fixation rate of 100% after only 7 days of treatment. The addition of RHA to cement contributes to the formation of calcium silicate hydrate (CSH) and calcium aluminate hydrate of C3ASH6 type. The presence of RHA in the mortars improves their mechanical strength. This improvement is due to the filler effect of RHA and to formation of the CSH resulting from the pozzolanic reactivity between the amorphous silica of the RHA and the portlandite released by hydration of the cement. 展开更多
关键词 mortar RICE Husk ASH Mechanical STRENGTH FILLER Effect CSH
下载PDF
Study of Durability of Siliceous Sand Based Mortars in Togo, and of Binder of Plastic Bags of the Kind “Voltic”: Hydrocarbons’ Effect 被引量:1
17
作者 Kossi Bollanigni Amey Ouro-Djobo Samah +4 位作者 Kouma Neglo Abalo P’Kla Komi Mawutodzi Sounsah Komlan Amoussou A. Vianou 《Journal of Minerals and Materials Characterization and Engineering》 2018年第1期25-37,共13页
The present study aims at environmental protection through the use of plastic wastes in the production of mortar. The behavior of siliceous sand-based mortars from Togo and binders of plastic bags of the kind “voltic... The present study aims at environmental protection through the use of plastic wastes in the production of mortar. The behavior of siliceous sand-based mortars from Togo and binders of plastic bags of the kind “voltic” is analyzed. Mortar samples from a mixture of siliceous sand and binder of plastic bags are prepared and subjected to physical and mechanical tests after immersion in the hydrocarbon from 0 hour to 504 hours. The result demonstrates that hydrocarbons have no influence on mechanical properties of mortars for an immersion time below 3 hours. Between 3 hours and 24 hours the presence of hydrocarbon increases their physical and mechanical properties. After 24 hours mortars generally lose the mechanical properties of around 8% to 24% due to the loss of viscosity and cohesiveness of the binder caused by the fuel. The behavior in the face of hydrocarbons shows that the material can be used in the surface of roads by carefully avoiding that hydrocarbons remain on the roads for a period of time beyond 24 hours. 展开更多
关键词 mortar Plastic BAGS Siliceous SAND Hydrocarbon Physical and Mechanical Properties
下载PDF
Variables Affecting the pH Measurement of Cement Mortars 被引量:1
18
作者 PAYAM Shafigh SUMRA Yousuf ZAINAH Ibrahim 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期689-696,共8页
A quantitative pH measuring method has been used to measure the pH of pure and blended cement mortars.The blended cement mortars incorporating supplementary cementitious materials(SCMs)such as fly ash(FA),ground granu... A quantitative pH measuring method has been used to measure the pH of pure and blended cement mortars.The blended cement mortars incorporating supplementary cementitious materials(SCMs)such as fly ash(FA),ground granulated ballast furnace slag(GGBFS)and palm oil fuel ash(POFA)were used.Moreover,different variables affecting the pH values of CBMs such as temperature of sample solution,quantity of sample powder,dilution ratio and temporary storage of sample during pH measuring process have been studied for all cement mortars. 展开更多
关键词 mortar cementitious materials pH value dilution ratio TEMPERATURE
下载PDF
Using Colloidal Nano Silica to Enhance the Performance of Cementitious Mortars 被引量:1
19
作者 Achraf Ayad Aly Said 《Open Journal of Civil Engineering》 2018年第1期82-90,共9页
Nanomaterials have been widely used in the past few decades due to their proven capacity to enhance the mechanical properties of materials. While many studies have sought to improve the understanding of how nanomateri... Nanomaterials have been widely used in the past few decades due to their proven capacity to enhance the mechanical properties of materials. While many studies have sought to improve the understanding of how nanomaterials affect the behavior of concrete, additional research is needed in order to achieve the full potential of the material, especially in the presence of supplementary cementitious materials. This study aims to investigate the mechanical properties of cement mortars incorporating both nano-silica (NS) and class F fly ash (FA). Furthermore, mercury intrusion porosimetry (MIP) was performed to study its effect on pore characteristics, and thermogravimetric analysis (TGA) was performed to measure the calcium hydroxide Ca(OH)2 content in the mixtures. It was found that using nano-silica enhances the compressive strength, reduces the total porosity and accelerates the pozzolanic reaction. 展开更多
关键词 COLLOIDAL NANO SILICA NANO SILICA Concrete mortar MIP TGA
下载PDF
Corrosion Behavior of Reinforcement Steel Embedded in Cement Mortars Using Different Protection Systems 被引量:1
20
作者 Evgenia Voulgari Aggeliki Zacharopoulou +1 位作者 Nikolaos Chousidis George Batis 《Materials Sciences and Applications》 2019年第6期461-474,共14页
Although reinforced concrete structures are able to withstand towards a variety of adverse environmental conditions, reinforcement corrosion could lead to concrete structure deterioration. The present study examines f... Although reinforced concrete structures are able to withstand towards a variety of adverse environmental conditions, reinforcement corrosion could lead to concrete structure deterioration. The present study examines four different ways of using corrosion inhibitors against pitting corrosion. In particular, it was investigated the chloride penetration resistance of reinforced cement mortars using corrosion inhibitor applied in three different ways. The corrosion behavior of the specimens was evaluated by electrochemical methods such as Linear Polarization Resistance and Halfcell Potential Resistance. In addition, the mass loss of steel rebars against time of partially immersion in sodium chloride (NaCl) solution was carried out in the lab. The experimental results showed that the corrosion systems examined in the study provide anticorrosion protection on steel rebars against chlorides comparing with the reference group. 展开更多
关键词 Cement mortars REINFORCEMENT STEEL PITTING CORROSION CORROSION Inhibitors Chloride Ions Electrochemical Measurements Mass Loss
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部